<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title lang="ca-ES">$\mathbf{R}$-trees and the Bieri-Neumann-Strebel invariant</dc:title>
<dc:creator>Levitt, G.</dc:creator>
<dc:description lang="ca-ES">Let $G$ be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma (G)$, in terms of geometric abelian actions on ${\bold R}$-trees. We provide a proof of Brown's characterization of $\Sigma (G)$ by exceptional abelian actions of $G$, using geometric methods.</dc:description>
<dc:publisher lang="ca-ES">Universitat Autònoma de Barcelona</dc:publisher>
<dc:date>1994</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:format>application/pdf</dc:format>
<dc:identifier>http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799</dc:identifier>
<dc:identifier>2014-4350</dc:identifier>
<dc:identifier>0214-1493</dc:identifier>
<dc:source lang="0">RACO (Revistes Catalanes amb Accés Obert)</dc:source>
<dc:language>eng</dc:language>
<dc:relation>Publicacions Matemàtiques, 1994, Vol. 38, Núm. 1 (1994): Vol.: 38 Núm.: 1, p. 195-202</dc:relation>
<dc:relation>http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799/55968</dc:relation>
<dc:rights lang="ca-ES">info:eu-repo/semantics/openAccess</dc:rights>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">
<edm:ProvidedCHO about="https://catalonica.bnc.cat/catalonicahub/lod/oai:raco.cat:article_--_37799#ent0">
<dc:creator>Levitt, G.</dc:creator>
<dc:date>1994</dc:date>
<dc:description lang="ca-ES">Let $G$ be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma (G)$, in terms of geometric abelian actions on ${\bold R}$-trees. We provide a proof of Brown's characterization of $\Sigma (G)$ by exceptional abelian actions of $G$, using geometric methods.</dc:description>
<dc:identifier>http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799</dc:identifier>
<dc:identifier>2014-4350</dc:identifier>
<dc:identifier>0214-1493</dc:identifier>
<dc:language>eng</dc:language>
<dc:publisher lang="ca-ES">Universitat Autònoma de Barcelona</dc:publisher>
<dc:relation>Publicacions Matemàtiques, 1994, Vol. 38, Núm. 1 (1994): Vol.: 38 Núm.: 1, p. 195-202</dc:relation>
<dc:relation>http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799/55968</dc:relation>
<dc:rights lang="ca-ES">info:eu-repo/semantics/openAccess</dc:rights>
<dc:source lang="0">RACO (Revistes Catalanes amb Accés Obert)</dc:source>
<dc:title lang="ca-ES">$\mathbf{R}$-trees and the Bieri-Neumann-Strebel invariant</dc:title>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="https://catalonica.bnc.cat/catalonicahub/lod/oai:raco.cat:article_--_37799#ent1">
<edm:dataProvider>RACO. Revistes Catalanes amb Accés Obert</edm:dataProvider>
<edm:provider>Catalònica</edm:provider>
</ore:Aggregation>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>nmb a2200000Iu 4500</leader>
<controlfield tag="008">"940111 1994 eng "</controlfield>
<datafield ind1="#" ind2="#" tag="022">
<subfield code="$a">2014-4350</subfield>
</datafield>
<datafield ind1="#" ind2="#" tag="022">
<subfield code="$a">0214-1493</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">$\mathbf{R}$-trees and the Bieri-Neumann-Strebel invariant</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Levitt, G.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Let $G$ be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma (G)$, in terms of geometric abelian actions on ${\bold R}$-trees. We provide a proof of Brown's characterization of $\Sigma (G)$ by exceptional abelian actions of $G$, using geometric methods.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="b">Publicacions Matemàtiques</subfield>
</datafield>
<dataField ind1=" " ind2=" " tag="260">
<subfield code="c">1994-01-11 00:00:00</subfield>
</dataField>
<datafield ind1=" " ind2=" " tag="856">
<subfield code="q">application/pdf</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="u">http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="786">
<subfield code="n">Publicacions Matemàtiques; Vol. 38, Núm. 1 (1994): Vol.: 38 Núm.: 1</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="546">
<subfield code="a">cat</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="540">
<subfield code="a">##submission.copyrightStatement##</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_biblat catForm="u" encLvl="3" level="m" status="c" type="a" schemaLocation="oai_biblat">
<fixfield id="008">"940111 1994 eng "</fixfield>
<varfield i1="#" i2="#" id="000">
<subfield label="i">3.0.0v1.5</subfield>
<subfield label="v">3.1.1.4</subfield>
</varfield>
<varfield i1="#" i2="#" id="008">
</varfield>
<varfield i1="#" i2="#" id="022">
<subfield label="a">0214-1493</subfield>
<subfield label="b">2014-4350</subfield>
</varfield>
<varfield i1="#" i2="#" id="100">
<subfield label="a">Levitt, G.</subfield>
</varfield>
<varfield i1="#" i2="#" id="222">
<subfield label="a">Publicacions Matemàtiques</subfield>
</varfield>
<varfield i1="#" i2="#" id="260">
<subfield label="c">1994</subfield>
</varfield>
<varfield i1="#" i2="#" id="300">
<subfield label="a">V38,</subfield>
<subfield label="b">N1</subfield>
<subfield label="e">P195-202</subfield>
</varfield>
<varfield i1="#" i2="#" id="520">
<subfield label="o">Let $G$ be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma (G)$, in terms of geometric abelian actions on ${\bold R}$-trees. We provide a proof of Brown's characterization of $\Sigma (G)$ by exceptional abelian actions of $G$, using geometric methods.</subfield>
</varfield>
<varfield i1="" i2="" id="546">
</varfield>
<varfield i1=" " i2=" " id="856">
<subfield label="q">application/pdf</subfield>
<subfield label="u">http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799/55968</subfield>
</varfield>
</oai_biblat>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_marc catForm="u" encLvl="3" level="m" status="c" type="a" schemaLocation="http://www.openarchives.org/OAI/1.1/oai_marc http://www.openarchives.org/OAI/1.1/oai_marc.xsd">
<fixfield id="008">"940111 1994 eng "</fixfield>
<varfield i1="#" i2="#" id="022">
<subfield label="$a">2014-4350</subfield>
</varfield>
<varfield i1="#" i2="#" id="022">
<subfield label="$a">0214-1493</subfield>
</varfield>
<varfield i1=" " i2=" " id="042">
<subfield label="a">dc</subfield>
</varfield>
<varfield i1="0" i2="0" id="245">
<subfield label="a">$\mathbf{R}$-trees and the Bieri-Neumann-Strebel invariant</subfield>
</varfield>
<varfield i1="1" i2=" " id="100">
<subfield label="a">Levitt, G.</subfield>
</varfield>
<varfield i1=" " i2=" " id="520">
<subfield label="a">Let $G$ be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma (G)$, in terms of geometric abelian actions on ${\bold R}$-trees. We provide a proof of Brown's characterization of $\Sigma (G)$ by exceptional abelian actions of $G$, using geometric methods.</subfield>
</varfield>
<varfield i1=" " i2=" " id="260">
<subfield label="b">Publicacions Matemàtiques</subfield>
</varfield>
<varfield i1=" " i2=" " id="260">
<subfield label="c">1994-01-11 00:00:00</subfield>
</varfield>
<varfield i1=" " i2=" " id="856">
<subfield label="q">application/pdf</subfield>
</varfield>
<varfield i1="4" i2="0" id="856">
<subfield label="u">http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799</subfield>
</varfield>
<varfield i1="0" i2=" " id="786">
<subfield label="n">Publicacions Matemàtiques; Vol. 38, Núm. 1 (1994): Vol.: 38 Núm.: 1</subfield>
</varfield>
<varfield i1=" " i2=" " id="546">
<subfield label="a">cat</subfield>
</varfield>
<varfield i1=" " i2=" " id="540">
<subfield label="a">##submission.copyrightStatement##</subfield>
</varfield>
</oai_marc>
<?xml version="1.0" encoding="UTF-8" ?>
<rfc1807 schemaLocation="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt http://www.openarchives.org/OAI/1.1/rfc1807.xsd">
<bib-version>v2</bib-version>
<id>http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799</id>
<entry>2014-03-14T11:40:04Z</entry>
<organization>Publicacions Matemàtiques</organization>
<organization>Vol. 38, Núm. 1 (1994): Vol.: 38 Núm.: 1; 195-202</organization>
<title>$\mathbf{R}$-trees and the Bieri-Neumann-Strebel invariant</title>
<author>Levitt, G.</author>
<date>1994-01-11 00:00:00</date>
<other_access>url:http://www.raco.cat/index.php/PublicacionsMatematiques/article/view/37799</other_access>
<language>eng</language>
<abstract>Let $G$ be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma (G)$, in terms of geometric abelian actions on ${\bold R}$-trees. We provide a proof of Brown's characterization of $\Sigma (G)$ by exceptional abelian actions of $G$, using geometric methods.</abstract>
</rfc1807>