<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ dc:title >
< dc:creator > Puig-Gironès, Roger </ dc:creator >
< dc:creator > Real, Joan </ dc:creator >
< dc:subject > Biodiversitat </ dc:subject >
< dc:subject > Biodiversity </ dc:subject >
< dc:subject > Indicadors biològics </ dc:subject >
< dc:subject > Indicators (Biology) </ dc:subject >
< dc:description > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ dc:description >
< dc:description > This work has been carried out through the Biodiversity Monitoring Centre of Mediterranean Mountains (CMBMM) thanks a convention of Diputació de Barcelona and Universitat de Barcelona </ dc:description >
< dc:date > 2022-03-15 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:type > peer-reviewed </ dc:type >
< dc:identifier > http://hdl.handle.net/10256/21659 </ dc:identifier >
< dc:relation > info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0265246 </ dc:relation >
< dc:relation > info:eu-repo/semantics/altIdentifier/eissn/1932-6203 </ dc:relation >
< dc:language > eng </ dc:language >
< dc:source > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ dc:source >
< dc:source > Articles publicats (D-CCAA) </ dc:source >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:format > application/pdf </ dc:format >
< dc:publisher > Public Library of Science (PLoS) </ dc:publisher >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< d:DIDL schemaLocation =" urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd " >
< d:DIDLInfo >
< dcterms:created schemaLocation =" http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd " > 2022-09-21T11:09:37Z </ dcterms:created >
</ d:DIDLInfo >
< d:Item id =" hdl_10256_21659 " >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< dii:Identifier schemaLocation =" urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd " > urn:hdl:10256/21659 </ dii:Identifier >
</ d:Statement >
</ d:Descriptor >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ dc:title >
< dc:creator > Puig-Gironès, Roger </ dc:creator >
< dc:creator > Real, Joan </ dc:creator >
< dc:subject > Biodiversitat </ dc:subject >
< dc:subject > Biodiversity </ dc:subject >
< dc:subject > Indicadors biològics </ dc:subject >
< dc:subject > Indicators (Biology) </ dc:subject >
< dc:description > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ dc:description >
< dc:date > 2022-09-21T11:09:37Z </ dc:date >
< dc:date > 2022-09-21T11:09:37Z </ dc:date >
< dc:date > 2022-03-15 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > http://hdl.handle.net/10256/21659 </ dc:identifier >
< dc:identifier > https://doi.org/10.1371/journal.pone.0265246 </ dc:identifier >
< dc:identifier > 035556 </ dc:identifier >
< dc:identifier > 1932-6203 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció digital del document publicat a: https://doi.org/10.1371/journal.pone.0265246 </ dc:relation >
< dc:relation > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ dc:relation >
< dc:relation > Articles publicats (D-CCAA) </ dc:relation >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:publisher > Public Library of Science (PLoS) </ dc:publisher >
</ oai_dc:dc >
</ d:Statement >
</ d:Descriptor >
< d:Component id =" 10256_21659_1 " >
</ d:Component >
</ d:Item >
</ d:DIDL >
<?xml version="1.0" encoding="UTF-8" ?>
< dim:dim schemaLocation =" http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd " >
< dim:field element =" contributor " mdschema =" dc " qualifier =" author " > Puig-Gironès, Roger </ dim:field >
< dim:field element =" contributor " mdschema =" dc " qualifier =" author " > Real, Joan </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" accessioned " > 2022-09-21T11:09:37Z </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" available " > 2022-09-21T11:09:37Z </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" issued " > 2022-03-15 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" uri " > http://hdl.handle.net/10256/21659 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" doi " > https://doi.org/10.1371/journal.pone.0265246 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" idgrec " > 035556 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" eissn " > 1932-6203 </ dim:field >
< dim:field element =" description " lang =" cat " mdschema =" dc " qualifier =" abstract " > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ dim:field >
< dim:field element =" description " lang =" en " mdschema =" dc " qualifier =" provenance " > Submitted by Claudia Plana (claudia.plana@udg.edu) on 2022-09-21T11:09:37Z No. of bitstreams: 2 license_rdf: 908 bytes, checksum: 0175ea4a2d4caec4bbcc37e300941108 (MD5) comprehensive.pdf: 1309320 bytes, checksum: b8529afddec0ad212cdd117a76ab0981 (MD5) </ dim:field >
< dim:field element =" description " lang =" en " mdschema =" dc " qualifier =" provenance " > Made available in DSpace on 2022-09-21T11:09:37Z (GMT). No. of bitstreams: 2 license_rdf: 908 bytes, checksum: 0175ea4a2d4caec4bbcc37e300941108 (MD5) comprehensive.pdf: 1309320 bytes, checksum: b8529afddec0ad212cdd117a76ab0981 (MD5) Previous issue date: 2022-03-15 </ dim:field >
< dim:field element =" description " lang =" cat " mdschema =" dc " qualifier =" sponsorship " > This work has been carried out through the Biodiversity Monitoring Centre of Mediterranean Mountains (CMBMM) thanks a convention of Diputació de Barcelona and Universitat de Barcelona </ dim:field >
< dim:field element =" format " lang =" cat " mdschema =" dc " qualifier =" mimetype " > application/pdf </ dim:field >
< dim:field element =" language " lang =" cat " mdschema =" dc " qualifier =" iso " > eng </ dim:field >
< dim:field element =" publisher " lang =" cat " mdschema =" dc " > Public Library of Science (PLoS) </ dim:field >
< dim:field element =" relation " lang =" cat " mdschema =" dc " qualifier =" isformatof " > Reproducció digital del document publicat a: https://doi.org/10.1371/journal.pone.0265246 </ dim:field >
< dim:field element =" relation " lang =" cat " mdschema =" dc " qualifier =" ispartof " > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ dim:field >
< dim:field element =" relation " lang =" cat " mdschema =" dc " qualifier =" ispartofseries " > Articles publicats (D-CCAA) </ dim:field >
< dim:field element =" rights " lang =" * " mdschema =" dc " > Attribution 4.0 International </ dim:field >
< dim:field element =" rights " lang =" * " mdschema =" dc " qualifier =" uri " > http://creativecommons.org/licenses/by/4.0/ </ dim:field >
< dim:field element =" rights " lang =" cat " mdschema =" dc " qualifier =" accessRights " > info:eu-repo/semantics/openAccess </ dim:field >
< dim:field element =" subject " lang =" cat " mdschema =" dc " > Biodiversitat </ dim:field >
< dim:field element =" subject " lang =" cat " mdschema =" dc " > Biodiversity </ dim:field >
< dim:field element =" subject " lang =" cat " mdschema =" dc " > Indicadors biològics </ dim:field >
< dim:field element =" subject " lang =" cat " mdschema =" dc " > Indicators (Biology) </ dim:field >
< dim:field element =" title " lang =" cat " mdschema =" dc " > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ dim:field >
< dim:field element =" type " lang =" cat " mdschema =" dc " > info:eu-repo/semantics/article </ dim:field >
< dim:field element =" type " lang =" cat " mdschema =" dc " qualifier =" version " > info:eu-repo/semantics/publishedVersion </ dim:field >
< dim:field element =" type " lang =" cat " mdschema =" dc " qualifier =" peerreviewed " > peer-reviewed </ dim:field >
</ dim:dim >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:dugi-doc.udg.edu:10256_--_21659#ent0 " >
< dc:creator > Puig-Gironès, Roger </ dc:creator >
< dc:creator > Real, Joan </ dc:creator >
< dc:date > 2022-03-15 </ dc:date >
< dc:description > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ dc:description >
< dc:description > This work has been carried out through the Biodiversity Monitoring Centre of Mediterranean Mountains (CMBMM) thanks a convention of Diputació de Barcelona and Universitat de Barcelona </ dc:description >
< dc:identifier > http://hdl.handle.net/10256/21659 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:publisher > Public Library of Science (PLoS) </ dc:publisher >
< dc:relation > info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0265246 </ dc:relation >
< dc:relation > info:eu-repo/semantics/altIdentifier/eissn/1932-6203 </ dc:relation >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:source > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ dc:source >
< dc:source > Articles publicats (D-CCAA) </ dc:source >
< dc:subject > Biodiversitat </ dc:subject >
< dc:subject > Biodiversity </ dc:subject >
< dc:subject > Indicadors biològics </ dc:subject >
< dc:subject > Indicators (Biology) </ dc:subject >
< dc:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ dc:title >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:type > peer-reviewed </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:dugi-doc.udg.edu:10256_--_21659#ent1 " >
< edm:dataProvider > DUGiDocs. Recerca </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< thesis schemaLocation =" http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd " >
< title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ title >
< creator > Puig-Gironès, Roger </ creator >
< creator > Real, Joan </ creator >
< subject > Biodiversitat </ subject >
< subject > Biodiversity </ subject >
< subject > Indicadors biològics </ subject >
< subject > Indicators (Biology) </ subject >
< description > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ description >
< date > 2022-09-21 </ date >
< date > 2022-09-21 </ date >
< date > 2022-03-15 </ date >
< type > info:eu-repo/semantics/article </ type >
< identifier > http://hdl.handle.net/10256/21659 </ identifier >
< identifier > https://doi.org/10.1371/journal.pone.0265246 </ identifier >
< identifier > 035556 </ identifier >
< identifier > 1932-6203 </ identifier >
< language > eng </ language >
< relation > Reproducció digital del document publicat a: https://doi.org/10.1371/journal.pone.0265246 </ relation >
< relation > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ relation >
< relation > Articles publicats (D-CCAA) </ relation >
< rights > http://creativecommons.org/licenses/by/4.0/ </ rights >
< rights > info:eu-repo/semantics/openAccess </ rights >
< rights > Attribution 4.0 International </ rights >
< publisher > Public Library of Science (PLoS) </ publisher >
</ thesis >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > 00925njm 22002777a 4500 </ leader >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Puig-Gironès, Roger </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Real, Joan </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2022-03-15 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > http://hdl.handle.net/10256/21659 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > https://doi.org/10.1371/journal.pone.0265246 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 035556 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 1932-6203 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Biodiversitat </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Biodiversity </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Indicadors biològics </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Indicators (Biology) </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< mets ID =" DSpace_ITEM_10256-21659 " OBJID =" hdl:10256/21659 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >
< metsHdr CREATEDATE =" 2023-05-21T20:05:49Z " >
< agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >
< name > DUGiDocs </ name >
</ agent >
</ metsHdr >
< dmdSec ID =" DMD_10256_21659 " >
< mdWrap MDTYPE =" MODS " >
< xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Puig-Gironès, Roger </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Real, Joan </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2022-09-21T11:09:37Z </ mods:dateAccessioned >
</ mods:extension >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2022-09-21T11:09:37Z </ mods:dateAvailable >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022-03-15 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" uri " > http://hdl.handle.net/10256/21659 </ mods:identifier >
< mods:identifier type =" doi " > https://doi.org/10.1371/journal.pone.0265246 </ mods:identifier >
< mods:identifier type =" idgrec " > 035556 </ mods:identifier >
< mods:identifier type =" eissn " > 1932-6203 </ mods:identifier >
< mods:abstract > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ mods:abstract >
< mods:language >
< mods:languageTerm authority =" rfc3066 " > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > Attribution 4.0 International </ mods:accessCondition >
< mods:subject >
< mods:topic > Biodiversitat </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Biodiversity </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Indicadors biològics </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Indicators (Biology) </ mods:topic >
</ mods:subject >
< mods:titleInfo >
< mods:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
</ mods:mods >
</ xmlData >
</ mdWrap >
</ dmdSec >
< amdSec ID =" TMD_10256_21659 " >
< rightsMD ID =" RIG_10256_21659 " >
< mdWrap MDTYPE =" OTHER " MIMETYPE =" text/plain " OTHERMDTYPE =" DSpaceDepositLicense " >
< binData > Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= </ binData >
</ mdWrap >
</ rightsMD >
</ amdSec >
< amdSec ID =" FO_10256_21659_1 " >
< techMD ID =" TECH_O_10256_21659_1 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://dugi-doc.udg.edu/bitstream/10256/21659/1/comprehensive.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > b8529afddec0ad212cdd117a76ab0981 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 1309320 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > comprehensive.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< fileSec >
< fileGrp USE =" ORIGINAL " >
< file ADMID =" FO_10256_21659_1 " CHECKSUM =" b8529afddec0ad212cdd117a76ab0981 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_10256_21659_1 " ID =" BITSTREAM_ORIGINAL_10256_21659_1 " MIMETYPE =" application/pdf " SEQ =" 1 " SIZE =" 1309320 " >
</ file >
</ fileGrp >
</ fileSec >
< structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >
< div ADMID =" DMD_10256_21659 " TYPE =" DSpace Object Contents " >
< div TYPE =" DSpace BITSTREAM " >
</ div >
</ div >
</ structMap >
</ mets >
<?xml version="1.0" encoding="UTF-8" ?>
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:namePart > Puig-Gironès, Roger </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Real, Joan </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2022-09-21T11:09:37Z </ mods:dateAvailable >
</ mods:extension >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2022-09-21T11:09:37Z </ mods:dateAccessioned >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022-03-15 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" uri " > http://hdl.handle.net/10256/21659 </ mods:identifier >
< mods:identifier type =" doi " > https://doi.org/10.1371/journal.pone.0265246 </ mods:identifier >
< mods:identifier type =" idgrec " > 035556 </ mods:identifier >
< mods:identifier type =" eissn " > 1932-6203 </ mods:identifier >
< mods:abstract > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ mods:abstract >
< mods:language >
< mods:languageTerm > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > http://creativecommons.org/licenses/by/4.0/ </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > info:eu-repo/semantics/openAccess </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > Attribution 4.0 International </ mods:accessCondition >
< mods:subject >
< mods:topic > Biodiversitat </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Biodiversity </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Indicadors biològics </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Indicators (Biology) </ mods:topic >
</ mods:subject >
< mods:titleInfo >
< mods:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
</ mods:mods >
<?xml version="1.0" encoding="UTF-8" ?>
< datacite:resource schemaLocation =" http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4-2/metadata.xsd " >
< datacite:identifier identifierType =" Handle " > http://hdl.handle.net/10256/21659 </ datacite:identifier >
< datacite:titles >
< datacite:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ datacite:title >
</ datacite:titles >
< datacite:creators >
< datacite:creator >
< datacite:creatorName > Puig-Gironès, Roger </ datacite:creatorName >
< datacite:nameIdentifier nameIdentifierScheme =" ORCID " schemeURI =" http://orcid.org/ " > 0000-0002-4692-8192 </ datacite:nameIdentifier >
</ datacite:creator >
< datacite:creator >
< datacite:creatorName > Real, Joan </ datacite:creatorName >
</ datacite:creator >
</ datacite:creators >
< datacite:subjects >
< datacite:subject > Biodiversitat </ datacite:subject >
< datacite:subject > Biodiversity </ datacite:subject >
< datacite:subject > Indicadors biològics </ datacite:subject >
< datacite:subject > Indicators (Biology) </ datacite:subject >
</ datacite:subjects >
< datacite:descriptions >
< datacite:description descriptionType =" Abstract " > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ datacite:description >
</ datacite:descriptions >
< datacite:dates >
< datacite:date dateType =" Issued " > 2022-03-15 </ datacite:date >
</ datacite:dates >
< datacite:publicationYear > 2022 </ datacite:publicationYear >
< datacite:languages >
< datacite:language > eng </ datacite:language >
</ datacite:languages >
< datacite:relatedIdentifiers >
< datacite:relatedIdentifier relatedIdentifierType =" DOI " relationType =" IsSupplementTo " > https://doi.org/10.1371/journal.pone.0265246 </ datacite:relatedIdentifier >
< datacite:relatedIdentifier relatedIdentifierType =" URL " relationType =" IsSupplementTo " > 035556 </ datacite:relatedIdentifier >
< datacite:relatedIdentifier relatedIdentifierType =" URL " relationType =" IsSupplementTo " > 1932-6203 </ datacite:relatedIdentifier >
</ datacite:relatedIdentifiers >
< datacite:rightsList >
< datacite:rights > Attribution 4.0 International </ datacite:rights >
< datacite:rights rightsURI =" http://creativecommons.org/licenses/by/4.0/ " > http://creativecommons.org/licenses/by/4.0/ </ datacite:rights >
< datacite:rights rightsURI =" info:eu-repo/semantics/openAccess " > info:eu-repo/semantics/openAccess </ datacite:rights >
</ datacite:rightsList >
< datacite:formats >
< datacite:format > application/pdf </ datacite:format >
</ datacite:formats >
< datacite:publisher > Public Library of Science (PLoS) </ datacite:publisher >
</ datacite:resource >
<?xml version="1.0" encoding="UTF-8" ?>
< atom:entry schemaLocation =" http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml " >
< atom:id > http://hdl.handle.net/10256/21659/ore.xml </ atom:id >
< atom:published > 2022-09-21T11:09:37Z </ atom:published >
< atom:updated > 2022-09-21T11:09:37Z </ atom:updated >
< atom:source >
< atom:generator > DUGiDocs </ atom:generator >
</ atom:source >
< atom:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ atom:title >
< atom:author >
< atom:name > Puig-Gironès, Roger </ atom:name >
</ atom:author >
< atom:author >
< atom:name > Real, Joan </ atom:name >
</ atom:author >
< oreatom:triples >
< rdf:Description about =" http://hdl.handle.net/10256/21659/ore.xml#atom " >
< dcterms:modified > 2022-09-21T11:09:37Z </ dcterms:modified >
</ rdf:Description >
< rdf:Description about =" https://dugi-doc.udg.edu/bitstream/10256/21659/3/license.txt " >
< dcterms:description > LICENSE </ dcterms:description >
</ rdf:Description >
< rdf:Description about =" https://dugi-doc.udg.edu/bitstream/10256/21659/2/license_rdf " >
< dcterms:description > CC-LICENSE </ dcterms:description >
</ rdf:Description >
< rdf:Description about =" https://dugi-doc.udg.edu/bitstream/10256/21659/1/comprehensive.pdf " >
< dcterms:description > ORIGINAL </ dcterms:description >
</ rdf:Description >
</ oreatom:triples >
</ atom:entry >
<?xml version="1.0" encoding="UTF-8" ?>
< qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >
< dc:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ dc:title >
< dc:creator > Puig-Gironès, Roger </ dc:creator >
< dc:creator > Real, Joan </ dc:creator >
< dc:subject > Biodiversitat </ dc:subject >
< dc:subject > Biodiversity </ dc:subject >
< dc:subject > Indicadors biològics </ dc:subject >
< dc:subject > Indicators (Biology) </ dc:subject >
< dcterms:abstract > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ dcterms:abstract >
< dcterms:dateAccepted > 2022-09-21T11:09:37Z </ dcterms:dateAccepted >
< dcterms:available > 2022-09-21T11:09:37Z </ dcterms:available >
< dcterms:created > 2022-09-21T11:09:37Z </ dcterms:created >
< dcterms:issued > 2022-03-15 </ dcterms:issued >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > http://hdl.handle.net/10256/21659 </ dc:identifier >
< dc:identifier > https://doi.org/10.1371/journal.pone.0265246 </ dc:identifier >
< dc:identifier > 035556 </ dc:identifier >
< dc:identifier > 1932-6203 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció digital del document publicat a: https://doi.org/10.1371/journal.pone.0265246 </ dc:relation >
< dc:relation > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ dc:relation >
< dc:relation > Articles publicats (D-CCAA) </ dc:relation >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:publisher > Public Library of Science (PLoS) </ dc:publisher >
</ qdc:qualifieddc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >
< ow:Publication about =" oai:dugi-doc.udg.edu:10256/21659 " >
< dc:title > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ dc:title >
< dc:creator > Puig-Gironès, Roger </ dc:creator >
< dc:creator > Real, Joan </ dc:creator >
< dc:subject > Biodiversitat </ dc:subject >
< dc:subject > Biodiversity </ dc:subject >
< dc:subject > Indicadors biològics </ dc:subject >
< dc:subject > Indicators (Biology) </ dc:subject >
< dc:description > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ dc:description >
< dc:date > 2022-09-21T11:09:37Z </ dc:date >
< dc:date > 2022-09-21T11:09:37Z </ dc:date >
< dc:date > 2022-03-15 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > http://hdl.handle.net/10256/21659 </ dc:identifier >
< dc:identifier > https://doi.org/10.1371/journal.pone.0265246 </ dc:identifier >
< dc:identifier > 035556 </ dc:identifier >
< dc:identifier > 1932-6203 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció digital del document publicat a: https://doi.org/10.1371/journal.pone.0265246 </ dc:relation >
< dc:relation > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ dc:relation >
< dc:relation > Articles publicats (D-CCAA) </ dc:relation >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:publisher > Public Library of Science (PLoS) </ dc:publisher >
</ ow:Publication >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< metadata schemaLocation =" http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd " >
< element name =" dc " >
< element name =" contributor " >
< element name =" author " >
< element name =" none " >
< field name =" value " > Puig-Gironès, Roger </ field >
< field name =" value " > Real, Joan </ field >
</ element >
</ element >
</ element >
< element name =" date " >
< element name =" accessioned " >
< element name =" none " >
< field name =" value " > 2022-09-21T11:09:37Z </ field >
</ element >
</ element >
< element name =" available " >
< element name =" none " >
< field name =" value " > 2022-09-21T11:09:37Z </ field >
</ element >
</ element >
< element name =" issued " >
< element name =" none " >
< field name =" value " > 2022-03-15 </ field >
</ element >
</ element >
</ element >
< element name =" identifier " >
< element name =" uri " >
< element name =" none " >
< field name =" value " > http://hdl.handle.net/10256/21659 </ field >
</ element >
</ element >
< element name =" doi " >
< element name =" none " >
< field name =" value " > https://doi.org/10.1371/journal.pone.0265246 </ field >
</ element >
</ element >
< element name =" idgrec " >
< element name =" none " >
< field name =" value " > 035556 </ field >
</ element >
</ element >
< element name =" eissn " >
< element name =" none " >
< field name =" value " > 1932-6203 </ field >
</ element >
</ element >
</ element >
< element name =" description " >
< element name =" abstract " >
< element name =" cat " >
< field name =" value " > The selection of the many biological indicators described in scientific literature is rarely based on systematic or clear-cut processes, and often takes into account only a single or very few taxa, or even disregards the complex interactions that exist between the components of biodiversity. In certain cases, the particular context of a site–for example in the Mediterranean Basin–makes it difficult to apply the choice of indicators to other regions proposed in the literature. Therefore, the selection of appropriate methodologies for generating relevant indicators for a particular site is of crucial importance. Here, we present a simple quantitative methodology capable of incorporating multidisciplinary information for assessing and selecting appropriate methods and indicators for monitoring local biodiversity. The methodology combines several ecological levels (species, habitats, processes, and ecosystem disturbances), and embraces biological interactions and common functional guilds (detritivores, producers, herbivores, and carnivores). We followed an iterative selection procedure consisting of five phases: 1) collection focal area useful information; 2) classification of this information into interrelated datasets; 3) assessment and selection of the relevant components using a quantitative relevance index; 4) the adding of taxonomic, physiognomic and functional similarities to the relevant components; and 5) the quantitative selection of the priority indicators in the study area. To demonstrate the potential of this methodology, we took as a case study the biodiversity components and their ecological interactions present in a protected area. We show that our methodology can help select appropriate local and long-term indicators, reduce the number of components required for thorough biodiversity monitoring, and underline the importance of ecological processes </ field >
</ element >
</ element >
< element name =" provenance " >
< element name =" en " >
< field name =" value " > Submitted by Claudia Plana (claudia.plana@udg.edu) on 2022-09-21T11:09:37Z No. of bitstreams: 2 license_rdf: 908 bytes, checksum: 0175ea4a2d4caec4bbcc37e300941108 (MD5) comprehensive.pdf: 1309320 bytes, checksum: b8529afddec0ad212cdd117a76ab0981 (MD5) </ field >
< field name =" value " > Made available in DSpace on 2022-09-21T11:09:37Z (GMT). No. of bitstreams: 2 license_rdf: 908 bytes, checksum: 0175ea4a2d4caec4bbcc37e300941108 (MD5) comprehensive.pdf: 1309320 bytes, checksum: b8529afddec0ad212cdd117a76ab0981 (MD5) Previous issue date: 2022-03-15 </ field >
</ element >
</ element >
< element name =" sponsorship " >
< element name =" cat " >
< field name =" value " > This work has been carried out through the Biodiversity Monitoring Centre of Mediterranean Mountains (CMBMM) thanks a convention of Diputació de Barcelona and Universitat de Barcelona </ field >
</ element >
</ element >
</ element >
< element name =" format " >
< element name =" mimetype " >
< element name =" cat " >
< field name =" value " > application/pdf </ field >
</ element >
</ element >
</ element >
< element name =" language " >
< element name =" iso " >
< element name =" cat " >
< field name =" value " > eng </ field >
</ element >
</ element >
</ element >
< element name =" publisher " >
< element name =" cat " >
< field name =" value " > Public Library of Science (PLoS) </ field >
</ element >
</ element >
< element name =" relation " >
< element name =" isformatof " >
< element name =" cat " >
< field name =" value " > Reproducció digital del document publicat a: https://doi.org/10.1371/journal.pone.0265246 </ field >
</ element >
</ element >
< element name =" ispartof " >
< element name =" cat " >
< field name =" value " > PLoS ONE, 2022, vol. 17, núm. 3, p. e0265246. </ field >
</ element >
</ element >
< element name =" ispartofseries " >
< element name =" cat " >
< field name =" value " > Articles publicats (D-CCAA) </ field >
</ element >
</ element >
</ element >
< element name =" rights " >
< element name =" * " >
< field name =" value " > Attribution 4.0 International </ field >
</ element >
< element name =" uri " >
< element name =" * " >
< field name =" value " > http://creativecommons.org/licenses/by/4.0/ </ field >
</ element >
</ element >
< element name =" accessRights " >
< element name =" cat " >
< field name =" value " > info:eu-repo/semantics/openAccess </ field >
</ element >
</ element >
</ element >
< element name =" subject " >
< element name =" cat " >
< field name =" value " > Biodiversitat </ field >
< field name =" value " > Biodiversity </ field >
< field name =" value " > Indicadors biològics </ field >
< field name =" value " > Indicators (Biology) </ field >
</ element >
</ element >
< element name =" title " >
< element name =" cat " >
< field name =" value " > A comprehensive but practical methodology for selecting biological indicators for long-term monitoring </ field >
</ element >
</ element >
< element name =" type " >
< element name =" cat " >
< field name =" value " > info:eu-repo/semantics/article </ field >
</ element >
< element name =" version " >
< element name =" cat " >
< field name =" value " > info:eu-repo/semantics/publishedVersion </ field >
</ element >
</ element >
< element name =" peerreviewed " >
< element name =" cat " >
< field name =" value " > peer-reviewed </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" adm " >
< element name =" sets " >
< element name =" hidden " >
< element name =" cat " >
< field name =" value " > rc1 </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" bundles " >
< element name =" bundle " >
< field name =" name " > LICENSE </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > license.txt </ field >
< field name =" originalName " > license.txt </ field >
< field name =" format " > text/plain </ field >
< field name =" size " > 1748 </ field >
< field name =" url " > https://dugi-doc.udg.edu/bitstream/10256/21659/3/license.txt </ field >
< field name =" checksum " > 8a4605be74aa9ea9d79846c1fba20a33 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 3 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > CC-LICENSE </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > license_rdf </ field >
< field name =" originalName " > license_rdf </ field >
< field name =" format " > application/rdf+xml; charset=utf-8 </ field >
< field name =" size " > 908 </ field >
< field name =" url " > https://dugi-doc.udg.edu/bitstream/10256/21659/2/license_rdf </ field >
< field name =" checksum " > 0175ea4a2d4caec4bbcc37e300941108 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 2 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > ORIGINAL </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > comprehensive.pdf </ field >
< field name =" originalName " > comprehensive.pdf </ field >
< field name =" format " > application/pdf </ field >
< field name =" size " > 1309320 </ field >
< field name =" url " > https://dugi-doc.udg.edu/bitstream/10256/21659/1/comprehensive.pdf </ field >
< field name =" checksum " > b8529afddec0ad212cdd117a76ab0981 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 1 </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" others " >
< field name =" handle " > 10256/21659 </ field >
< field name =" identifier " > oai:dugi-doc.udg.edu:10256/21659 </ field >
< field name =" lastModifyDate " > 2022-09-21 13:09:37.448 </ field >
</ element >
< element name =" repository " >
< field name =" name " > DUGiDocs </ field >
< field name =" mail " > oriol.olive@udg.edu </ field >
</ element >
< element name =" license " >
< field name =" bin " > Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= </ field >
</ element >
</ metadata >