<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > $p$-adic groups in quantum mechanics </ dc:title >
< dc:creator > Blanco Cabanillas, Anna </ dc:creator >
< dc:contributor > Travesa i Grau, Artur </ dc:contributor >
< dc:subject > Nombres p-àdics </ dc:subject >
< dc:subject > Camps p-àdics </ dc:subject >
< dc:subject > Anàlisi p-àdica </ dc:subject >
< dc:subject > Teoria quàntica </ dc:subject >
< dc:subject > Treballs de fi de grau </ dc:subject >
< dc:subject > p-adic numbers </ dc:subject >
< dc:subject > p-adic fields </ dc:subject >
< dc:subject > p-adic analysis </ dc:subject >
< dc:subject > Quantum theory </ dc:subject >
< dc:subject > Bachelor's theses </ dc:subject >
< dc:description > Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau </ dc:description >
< dc:description > [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. </ dc:description >
< dc:date > 2022-06-02T10:06:29Z </ dc:date >
< dc:date > 2022-06-02T10:06:29Z </ dc:date >
< dc:date > 2022-01-22 </ dc:date >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< dc:identifier > http://hdl.handle.net/2445/186255 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022 </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:format > 49 p. </ dc:format >
< dc:format > application/pdf </ dc:format >
< dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_186255#ent0 " >
< dc:contributor > Travesa i Grau, Artur </ dc:contributor >
< dc:creator > Blanco Cabanillas, Anna </ dc:creator >
< dc:date > 2022-06-02T10:06:29Z </ dc:date >
< dc:date > 2022-06-02T10:06:29Z </ dc:date >
< dc:date > 2022-01-22 </ dc:date >
< dc:description > Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau </ dc:description >
< dc:description > [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. </ dc:description >
< dc:identifier > http://hdl.handle.net/2445/186255 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022 </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >
< dc:subject > Nombres p-àdics </ dc:subject >
< dc:subject > Camps p-àdics </ dc:subject >
< dc:subject > Anàlisi p-àdica </ dc:subject >
< dc:subject > Teoria quàntica </ dc:subject >
< dc:subject > Treballs de fi de grau </ dc:subject >
< dc:subject > p-adic numbers </ dc:subject >
< dc:subject > p-adic fields </ dc:subject >
< dc:subject > p-adic analysis </ dc:subject >
< dc:subject > Quantum theory </ dc:subject >
< dc:subject > Bachelor's theses </ dc:subject >
< dc:title > $p$-adic groups in quantum mechanics </ dc:title >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_186255#ent1 " >
< edm:dataProvider > Dipòsit Digital de la Universitat de Barcelona </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > 00925njm 22002777a 4500 </ leader >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Blanco Cabanillas, Anna </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2022-01-22 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > http://hdl.handle.net/2445/186255 </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > $p$-adic groups in quantum mechanics </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< mets ID =" DSpace_ITEM_2445-186255 " OBJID =" hdl:2445/186255 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >
< metsHdr CREATEDATE =" 2024-06-06T04:46:33Z " >
< agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >
< name > Dipòsit Digital de la Universitat de Barcelona </ name >
</ agent >
</ metsHdr >
< dmdSec ID =" DMD_2445_186255 " >
< mdWrap MDTYPE =" MODS " >
< xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > advisor </ mods:roleTerm >
</ mods:role >
< mods:namePart > Travesa i Grau, Artur </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Blanco Cabanillas, Anna </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2022-06-02T10:06:29Z </ mods:dateAccessioned >
</ mods:extension >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2022-06-02T10:06:29Z </ mods:dateAvailable >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022-01-22 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" uri " > http://hdl.handle.net/2445/186255 </ mods:identifier >
< mods:abstract > [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. </ mods:abstract >
< mods:language >
< mods:languageTerm authority =" rfc3066 " > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022 </ mods:accessCondition >
< mods:titleInfo >
< mods:title > $p$-adic groups in quantum mechanics </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/bachelorThesis </ mods:genre >
</ mods:mods >
</ xmlData >
</ mdWrap >
</ dmdSec >
< amdSec ID =" TMD_2445_186255 " >
< rightsMD ID =" RIG_2445_186255 " >
< mdWrap MDTYPE =" OTHER " MIMETYPE =" text/plain " OTHERMDTYPE =" DSpaceDepositLicense " >
< binData > RWxzIG1hdGVyaWFscyBsbGl1cmF0cyBhbCBEaXDDsnNpdCBkaWdpdGFsIGRlIGxhIFVCIHF1ZSBlc3RpZ3VpbiBzdWJqZWN0ZXMgYSB1bmEgbGxpY8OobmNpYSBkZSBDcmVhdGl2ZSBDb21tb25zLAplbiBlbCBtb21lbnQgZGUgbGxpdXJhciBlbCBkb2N1bWVudCwgZWwgcHJvcGkgdXN1YXJpIGwnaGEgZCdlc2NvbGxpci4KU2kgdXMgcGxhdSBubyBvYmxpZGV1IGFzc2lnbmFyIHVuYSBsbGljw6huY2lhIGFsIHZvc3RyZSBkb2N1bWVudCEuCg== </ binData >
</ mdWrap >
</ rightsMD >
</ amdSec >
< amdSec ID =" FO_2445_186255_1 " >
< techMD ID =" TECH_O_2445_186255_1 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/186255/1/ces186255.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > b2a25a7f4ad229ba7be48f01f4e71629 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 309733 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > text/plain </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > ces186255.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< amdSec ID =" FO_2445_186255_2 " >
< techMD ID =" TECH_O_2445_186255_2 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/186255/2/tfg_blanco_cabanillas_anna.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > d66115f85308672d824f502eb9c0c1dd </ premis:messageDigest >
</ premis:fixity >
< premis:size > 559245 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > tfg_blanco_cabanillas_anna.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< amdSec ID =" FT_2445_186255_5 " >
< techMD ID =" TECH_T_2445_186255_5 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/186255/5/tfg_blanco_cabanillas_anna.pdf.txt </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 6cc46f17bf7ad65cbe11755fd2850745 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 104436 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > text/plain </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > tfg_blanco_cabanillas_anna.pdf.txt </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< fileSec >
< fileGrp USE =" ORIGINAL " >
< file ADMID =" FO_2445_186255_1 " CHECKSUM =" b2a25a7f4ad229ba7be48f01f4e71629 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_186255_1 " ID =" BITSTREAM_ORIGINAL_2445_186255_1 " MIMETYPE =" text/plain " SEQ =" 1 " SIZE =" 309733 " >
</ file >
< file ADMID =" FO_2445_186255_2 " CHECKSUM =" d66115f85308672d824f502eb9c0c1dd " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_186255_2 " ID =" BITSTREAM_ORIGINAL_2445_186255_2 " MIMETYPE =" application/pdf " SEQ =" 2 " SIZE =" 559245 " >
</ file >
</ fileGrp >
< fileGrp USE =" TEXT " >
< file ADMID =" FT_2445_186255_5 " CHECKSUM =" 6cc46f17bf7ad65cbe11755fd2850745 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_186255_5 " ID =" BITSTREAM_TEXT_2445_186255_5 " MIMETYPE =" text/plain " SEQ =" 5 " SIZE =" 104436 " >
</ file >
</ fileGrp >
</ fileSec >
< structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >
< div ADMID =" DMD_2445_186255 " TYPE =" DSpace Object Contents " >
< div TYPE =" DSpace BITSTREAM " >
</ div >
< div TYPE =" DSpace BITSTREAM " >
</ div >
</ div >
</ structMap >
</ mets >
<?xml version="1.0" encoding="UTF-8" ?>
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:namePart > Blanco Cabanillas, Anna </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2022-06-02T10:06:29Z </ mods:dateAvailable >
</ mods:extension >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2022-06-02T10:06:29Z </ mods:dateAccessioned >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022-01-22 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" uri " > http://hdl.handle.net/2445/186255 </ mods:identifier >
< mods:abstract > [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. </ mods:abstract >
< mods:language >
< mods:languageTerm > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > info:eu-repo/semantics/openAccess </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022 </ mods:accessCondition >
< mods:titleInfo >
< mods:title > $p$-adic groups in quantum mechanics </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/bachelorThesis </ mods:genre >
</ mods:mods >
<?xml version="1.0" encoding="UTF-8" ?>
< qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >
< dc:title > $p$-adic groups in quantum mechanics </ dc:title >
< dc:contributor.advisor > Travesa i Grau, Artur </ dc:contributor.advisor >
< dc:creator > Blanco Cabanillas, Anna </ dc:creator >
< dc:subject.classification > Nombres p-àdics </ dc:subject.classification >
< dc:subject.classification > Camps p-àdics </ dc:subject.classification >
< dc:subject.classification > Anàlisi p-àdica </ dc:subject.classification >
< dc:subject.classification > Teoria quàntica </ dc:subject.classification >
< dc:subject.classification > Treballs de fi de grau </ dc:subject.classification >
< dc:subject.other > p-adic numbers </ dc:subject.other >
< dc:subject.other > p-adic fields </ dc:subject.other >
< dc:subject.other > p-adic analysis </ dc:subject.other >
< dc:subject.other > Quantum theory </ dc:subject.other >
< dc:subject.other > Bachelor's theses </ dc:subject.other >
< dcterms:abstract > [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. </ dcterms:abstract >
< dcterms:dateAccepted > 2022-06-02T10:06:29Z </ dcterms:dateAccepted >
< dcterms:available > 2022-06-02T10:06:29Z </ dcterms:available >
< dcterms:created > 2022-06-02T10:06:29Z </ dcterms:created >
< dcterms:issued > 2022-01-22 </ dcterms:issued >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< dc:identifier > http://hdl.handle.net/2445/186255 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022 </ dc:rights >
< dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >
</ qdc:qualifieddc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >
< ow:Publication about =" oai:diposit.ub.edu:2445/186255 " >
< dc:title > $p$-adic groups in quantum mechanics </ dc:title >
< dc:creator > Blanco Cabanillas, Anna </ dc:creator >
< dc:contributor > Travesa i Grau, Artur </ dc:contributor >
< dc:description > Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau </ dc:description >
< dc:description > [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. </ dc:description >
< dc:date > 2022-06-02T10:06:29Z </ dc:date >
< dc:date > 2022-06-02T10:06:29Z </ dc:date >
< dc:date > 2022-01-22 </ dc:date >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< dc:identifier > http://hdl.handle.net/2445/186255 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022 </ dc:rights >
< dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >
</ ow:Publication >
</ rdf:RDF >