• Català
  • Castellano
  • English
Logo Catalònica
  • Búsqueda
  • Colecciones
  • Conócenos
  • Ayuda
  • Directorio
  • Profesionales
Está en:  › Datos de registro
Linked Open Data
$p$-adic differential Galois theory and Galois cohomology
Identificadores del recurso
http://hdl.handle.net/2445/184648
Procedencia
(Dipòsit Digital de la Universitat de Barcelona)

Ficha

Título:
$p$-adic differential Galois theory and Galois cohomology
Tema:
Geometria algebraica
Homologia
Teoria de Galois
Teoria de grups
Treballs de fi de grau
Algebraic geometry
Homology
Galois theory
Group theory
Bachelor's theses
Descripción:
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Teresa Crespo Vicente
[en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory.
Fuente:
Treballs Finals de Grau (TFG) - Matemàtiques
Idioma:
English
Autor/Productor:
Calderer i García, Genís
Otros colaboradores/productores:
Crespo Vicente, Teresa
Derechos:
cc-by-nc-nd (c) Genís Calderer i García, 2021
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/openAccess
Fecha:
2022-04-05T10:14:27Z
2021-06-18
Tipo de recurso:
info:eu-repo/semantics/bachelorThesis
Formato:
46 p.
application/pdf

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. < oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >

    1. < dc:title > $p$-adic differential Galois theory and Galois cohomology </ dc:title >

    2. < dc:creator > Calderer i García, Genís </ dc:creator >

    3. < dc:contributor > Crespo Vicente, Teresa </ dc:contributor >

    4. < dc:subject > Geometria algebraica </ dc:subject >

    5. < dc:subject > Homologia </ dc:subject >

    6. < dc:subject > Teoria de Galois </ dc:subject >

    7. < dc:subject > Teoria de grups </ dc:subject >

    8. < dc:subject > Treballs de fi de grau </ dc:subject >

    9. < dc:subject > Algebraic geometry </ dc:subject >

    10. < dc:subject > Homology </ dc:subject >

    11. < dc:subject > Galois theory </ dc:subject >

    12. < dc:subject > Group theory </ dc:subject >

    13. < dc:subject > Bachelor's theses </ dc:subject >

    14. < dc:description > Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Teresa Crespo Vicente </ dc:description >

    15. < dc:description > [en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory. </ dc:description >

    16. < dc:date > 2022-04-05T10:14:27Z </ dc:date >

    17. < dc:date > 2022-04-05T10:14:27Z </ dc:date >

    18. < dc:date > 2021-06-18 </ dc:date >

    19. < dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >

    20. < dc:identifier > http://hdl.handle.net/2445/184648 </ dc:identifier >

    21. < dc:language > eng </ dc:language >

    22. < dc:rights > cc-by-nc-nd (c) Genís Calderer i García, 2021 </ dc:rights >

    23. < dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >

    24. < dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >

    25. < dc:format > 46 p. </ dc:format >

    26. < dc:format > application/pdf </ dc:format >

    27. < dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >

    </ oai_dc:dc >

edm

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. < rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >

    1. < edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_184648#ent0 " >

      1. < dc:contributor > Crespo Vicente, Teresa </ dc:contributor >

      2. < dc:creator > Calderer i García, Genís </ dc:creator >

      3. < dc:date > 2022-04-05T10:14:27Z </ dc:date >

      4. < dc:date > 2022-04-05T10:14:27Z </ dc:date >

      5. < dc:date > 2021-06-18 </ dc:date >

      6. < dc:description > Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Teresa Crespo Vicente </ dc:description >

      7. < dc:description > [en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory. </ dc:description >

      8. < dc:identifier > http://hdl.handle.net/2445/184648 </ dc:identifier >

      9. < dc:language > eng </ dc:language >

      10. < dc:rights > cc-by-nc-nd (c) Genís Calderer i García, 2021 </ dc:rights >

      11. < dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >

      12. < dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >

      13. < dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >

      14. < dc:subject > Geometria algebraica </ dc:subject >

      15. < dc:subject > Homologia </ dc:subject >

      16. < dc:subject > Teoria de Galois </ dc:subject >

      17. < dc:subject > Teoria de grups </ dc:subject >

      18. < dc:subject > Treballs de fi de grau </ dc:subject >

      19. < dc:subject > Algebraic geometry </ dc:subject >

      20. < dc:subject > Homology </ dc:subject >

      21. < dc:subject > Galois theory </ dc:subject >

      22. < dc:subject > Group theory </ dc:subject >

      23. < dc:subject > Bachelor's theses </ dc:subject >

      24. < dc:title > $p$-adic differential Galois theory and Galois cohomology </ dc:title >

      25. < dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >

      26. < edm:type > TEXT </ edm:type >

      </ edm:ProvidedCHO >

    2. < ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_184648#ent1 " >

      1. < edm:aggregatedCHO resource =" https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_184648#ent0 " />
      2. < edm:dataProvider > Dipòsit Digital de la Universitat de Barcelona </ edm:dataProvider >

      3. < edm:isShownAt resource =" http://hdl.handle.net/2445/184648 " />
      4. < edm:isShownBy resource =" http://diposit.ub.edu/dspace/bitstream/2445/184648/1/ces184648.pdf " />
      5. < edm:provider > Catalònica </ edm:provider >

      6. < edm:rights resource =" http://creativecommons.org/licenses/by-nc-nd/3.0/es/ " />

      </ ore:Aggregation >

    </ rdf:RDF >

marc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. < record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >

    1. < leader > 00925njm 22002777a 4500 </ leader >

    2. < datafield ind1 =" " ind2 =" " tag =" 042 " >

      1. < subfield code =" a " > dc </ subfield >

      </ datafield >

    3. < datafield ind1 =" " ind2 =" " tag =" 720 " >

      1. < subfield code =" a " > Calderer i García, Genís </ subfield >

      2. < subfield code =" e " > author </ subfield >

      </ datafield >

    4. < datafield ind1 =" " ind2 =" " tag =" 260 " >

      1. < subfield code =" c " > 2021-06-18 </ subfield >

      </ datafield >

    5. < datafield ind1 =" " ind2 =" " tag =" 520 " >

      1. < subfield code =" a " > [en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory. </ subfield >

      </ datafield >

    6. < datafield ind1 =" 8 " ind2 =" " tag =" 024 " >

      1. < subfield code =" a " > http://hdl.handle.net/2445/184648 </ subfield >

      </ datafield >

    7. < datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >

      1. < subfield code =" a " > $p$-adic differential Galois theory and Galois cohomology </ subfield >

      </ datafield >

    </ record >

mets

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. < mets ID =" DSpace_ITEM_2445-184648 " OBJID =" hdl:2445/184648 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >

    1. < metsHdr CREATEDATE =" 2024-06-06T04:17:56Z " >

      1. < agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >

        1. < name > Dip&ograve;sit Digital de la Universitat de Barcelona </ name >

        </ agent >

      </ metsHdr >

    2. < dmdSec ID =" DMD_2445_184648 " >

      1. < mdWrap MDTYPE =" MODS " >

        1. < xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >

          1. < mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >

            1. < mods:name >

              1. < mods:role >

                1. < mods:roleTerm type =" text " > advisor </ mods:roleTerm >

                </ mods:role >

              2. < mods:namePart > Crespo Vicente, Teresa </ mods:namePart >

              </ mods:name >

            2. < mods:name >

              1. < mods:role >

                1. < mods:roleTerm type =" text " > author </ mods:roleTerm >

                </ mods:role >

              2. < mods:namePart > Calderer i García, Genís </ mods:namePart >

              </ mods:name >

            3. < mods:extension >

              1. < mods:dateAccessioned encoding =" iso8601 " > 2022-04-05T10:14:27Z </ mods:dateAccessioned >

              </ mods:extension >

            4. < mods:extension >

              1. < mods:dateAvailable encoding =" iso8601 " > 2022-04-05T10:14:27Z </ mods:dateAvailable >

              </ mods:extension >

            5. < mods:originInfo >

              1. < mods:dateIssued encoding =" iso8601 " > 2021-06-18 </ mods:dateIssued >

              </ mods:originInfo >

            6. < mods:identifier type =" uri " > http://hdl.handle.net/2445/184648 </ mods:identifier >

            7. < mods:abstract > [en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory. </ mods:abstract >

            8. < mods:language >

              1. < mods:languageTerm authority =" rfc3066 " > eng </ mods:languageTerm >

              </ mods:language >

            9. < mods:accessCondition type =" useAndReproduction " > cc-by-nc-nd (c) Genís Calderer i García, 2021 </ mods:accessCondition >

            10. < mods:titleInfo >

              1. < mods:title > $p$-adic differential Galois theory and Galois cohomology </ mods:title >

              </ mods:titleInfo >

            11. < mods:genre > info:eu-repo/semantics/bachelorThesis </ mods:genre >

            </ mods:mods >

          </ xmlData >

        </ mdWrap >

      </ dmdSec >

    3. < amdSec ID =" TMD_2445_184648 " >

      1. < rightsMD ID =" RIG_2445_184648 " >

        1. < mdWrap MDTYPE =" OTHER " MIMETYPE =" text/plain " OTHERMDTYPE =" DSpaceDepositLicense " >

          1. < binData > RWxzIG1hdGVyaWFscyBsbGl1cmF0cyBhbCBEaXDDsnNpdCBkaWdpdGFsIGRlIGxhIFVCIHF1ZSBlc3RpZ3VpbiBzdWJqZWN0ZXMgYSB1bmEgbGxpY8OobmNpYSBkZSBDcmVhdGl2ZSBDb21tb25zLAplbiBlbCBtb21lbnQgZGUgbGxpdXJhciBlbCBkb2N1bWVudCwgZWwgcHJvcGkgdXN1YXJpIGwnaGEgZCdlc2NvbGxpci4KU2kgdXMgcGxhdSBubyBvYmxpZGV1IGFzc2lnbmFyIHVuYSBsbGljw6huY2lhIGFsIHZvc3RyZSBkb2N1bWVudCEuCg== </ binData >

          </ mdWrap >

        </ rightsMD >

      </ amdSec >

    4. < amdSec ID =" FO_2445_184648_1 " >

      1. < techMD ID =" TECH_O_2445_184648_1 " >

        1. < mdWrap MDTYPE =" PREMIS " >

          1. < xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >

            1. < premis:premis >

              1. < premis:object >

                1. < premis:objectIdentifier >

                  1. < premis:objectIdentifierType > URL </ premis:objectIdentifierType >

                  2. < premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/184648/1/ces184648.pdf </ premis:objectIdentifierValue >

                  </ premis:objectIdentifier >

                2. < premis:objectCategory > File </ premis:objectCategory >

                3. < premis:objectCharacteristics >

                  1. < premis:fixity >

                    1. < premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >

                    2. < premis:messageDigest > a39de2618318f975c53b80df7e4e7ca1 </ premis:messageDigest >

                    </ premis:fixity >

                  2. < premis:size > 533270 </ premis:size >

                  3. < premis:format >

                    1. < premis:formatDesignation >

                      1. < premis:formatName > text/plain </ premis:formatName >

                      </ premis:formatDesignation >

                    </ premis:format >

                  </ premis:objectCharacteristics >

                4. < premis:originalName > ces184648.pdf </ premis:originalName >

                </ premis:object >

              </ premis:premis >

            </ xmlData >

          </ mdWrap >

        </ techMD >

      </ amdSec >

    5. < amdSec ID =" FO_2445_184648_2 " >

      1. < techMD ID =" TECH_O_2445_184648_2 " >

        1. < mdWrap MDTYPE =" PREMIS " >

          1. < xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >

            1. < premis:premis >

              1. < premis:object >

                1. < premis:objectIdentifier >

                  1. < premis:objectIdentifierType > URL </ premis:objectIdentifierType >

                  2. < premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/184648/2/tfg_genis_calderer_garcia.pdf </ premis:objectIdentifierValue >

                  </ premis:objectIdentifier >

                2. < premis:objectCategory > File </ premis:objectCategory >

                3. < premis:objectCharacteristics >

                  1. < premis:fixity >

                    1. < premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >

                    2. < premis:messageDigest > 3d2184d768721ed487e7bfc728d505be </ premis:messageDigest >

                    </ premis:fixity >

                  2. < premis:size > 808620 </ premis:size >

                  3. < premis:format >

                    1. < premis:formatDesignation >

                      1. < premis:formatName > application/pdf </ premis:formatName >

                      </ premis:formatDesignation >

                    </ premis:format >

                  </ premis:objectCharacteristics >

                4. < premis:originalName > tfg_genis_calderer_garcia.pdf </ premis:originalName >

                </ premis:object >

              </ premis:premis >

            </ xmlData >

          </ mdWrap >

        </ techMD >

      </ amdSec >

    6. < amdSec ID =" FT_2445_184648_5 " >

      1. < techMD ID =" TECH_T_2445_184648_5 " >

        1. < mdWrap MDTYPE =" PREMIS " >

          1. < xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >

            1. < premis:premis >

              1. < premis:object >

                1. < premis:objectIdentifier >

                  1. < premis:objectIdentifierType > URL </ premis:objectIdentifierType >

                  2. < premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/184648/5/tfg_genis_calderer_garcia.pdf.txt </ premis:objectIdentifierValue >

                  </ premis:objectIdentifier >

                2. < premis:objectCategory > File </ premis:objectCategory >

                3. < premis:objectCharacteristics >

                  1. < premis:fixity >

                    1. < premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >

                    2. < premis:messageDigest > 65115cddcc80f45b4e6d668dac528f8f </ premis:messageDigest >

                    </ premis:fixity >

                  2. < premis:size > 107852 </ premis:size >

                  3. < premis:format >

                    1. < premis:formatDesignation >

                      1. < premis:formatName > text/plain </ premis:formatName >

                      </ premis:formatDesignation >

                    </ premis:format >

                  </ premis:objectCharacteristics >

                4. < premis:originalName > tfg_genis_calderer_garcia.pdf.txt </ premis:originalName >

                </ premis:object >

              </ premis:premis >

            </ xmlData >

          </ mdWrap >

        </ techMD >

      </ amdSec >

    7. < fileSec >

      1. < fileGrp USE =" ORIGINAL " >

        1. < file ADMID =" FO_2445_184648_1 " CHECKSUM =" a39de2618318f975c53b80df7e4e7ca1 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_184648_1 " ID =" BITSTREAM_ORIGINAL_2445_184648_1 " MIMETYPE =" text/plain " SEQ =" 1 " SIZE =" 533270 " >

          1. < FLocat LOCTYPE =" URL " href =" http://diposit.ub.edu/dspace/bitstream/2445/184648/1/ces184648.pdf " type =" simple " />

          </ file >

        2. < file ADMID =" FO_2445_184648_2 " CHECKSUM =" 3d2184d768721ed487e7bfc728d505be " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_184648_2 " ID =" BITSTREAM_ORIGINAL_2445_184648_2 " MIMETYPE =" application/pdf " SEQ =" 2 " SIZE =" 808620 " >

          1. < FLocat LOCTYPE =" URL " href =" http://diposit.ub.edu/dspace/bitstream/2445/184648/2/tfg_genis_calderer_garcia.pdf " type =" simple " />

          </ file >

        </ fileGrp >

      2. < fileGrp USE =" TEXT " >

        1. < file ADMID =" FT_2445_184648_5 " CHECKSUM =" 65115cddcc80f45b4e6d668dac528f8f " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_184648_5 " ID =" BITSTREAM_TEXT_2445_184648_5 " MIMETYPE =" text/plain " SEQ =" 5 " SIZE =" 107852 " >

          1. < FLocat LOCTYPE =" URL " href =" http://diposit.ub.edu/dspace/bitstream/2445/184648/5/tfg_genis_calderer_garcia.pdf.txt " type =" simple " />

          </ file >

        </ fileGrp >

      </ fileSec >

    8. < structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >

      1. < div ADMID =" DMD_2445_184648 " TYPE =" DSpace Object Contents " >

        1. < div TYPE =" DSpace BITSTREAM " >

          1. < fptr FILEID =" BITSTREAM_ORIGINAL_2445_184648_1 " />

          </ div >

        2. < div TYPE =" DSpace BITSTREAM " >

          1. < fptr FILEID =" BITSTREAM_ORIGINAL_2445_184648_2 " />

          </ div >

        </ div >

      </ structMap >

    </ mets >

mods

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. < mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >

    1. < mods:name >

      1. < mods:namePart > Calderer i García, Genís </ mods:namePart >

      </ mods:name >

    2. < mods:extension >

      1. < mods:dateAvailable encoding =" iso8601 " > 2022-04-05T10:14:27Z </ mods:dateAvailable >

      </ mods:extension >

    3. < mods:extension >

      1. < mods:dateAccessioned encoding =" iso8601 " > 2022-04-05T10:14:27Z </ mods:dateAccessioned >

      </ mods:extension >

    4. < mods:originInfo >

      1. < mods:dateIssued encoding =" iso8601 " > 2021-06-18 </ mods:dateIssued >

      </ mods:originInfo >

    5. < mods:identifier type =" uri " > http://hdl.handle.net/2445/184648 </ mods:identifier >

    6. < mods:abstract > [en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory. </ mods:abstract >

    7. < mods:language >

      1. < mods:languageTerm > eng </ mods:languageTerm >

      </ mods:language >

    8. < mods:accessCondition type =" useAndReproduction " > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ mods:accessCondition >

    9. < mods:accessCondition type =" useAndReproduction " > info:eu-repo/semantics/openAccess </ mods:accessCondition >

    10. < mods:accessCondition type =" useAndReproduction " > cc-by-nc-nd (c) Genís Calderer i García, 2021 </ mods:accessCondition >

    11. < mods:titleInfo >

      1. < mods:title > $p$-adic differential Galois theory and Galois cohomology </ mods:title >

      </ mods:titleInfo >

    12. < mods:genre > info:eu-repo/semantics/bachelorThesis </ mods:genre >

    </ mods:mods >

qdc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. < qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >

    1. < dc:title > $p$-adic differential Galois theory and Galois cohomology </ dc:title >

    2. < dc:contributor.advisor > Crespo Vicente, Teresa </ dc:contributor.advisor >

    3. < dc:creator > Calderer i García, Genís </ dc:creator >

    4. < dc:subject.classification > Geometria algebraica </ dc:subject.classification >

    5. < dc:subject.classification > Homologia </ dc:subject.classification >

    6. < dc:subject.classification > Teoria de Galois </ dc:subject.classification >

    7. < dc:subject.classification > Teoria de grups </ dc:subject.classification >

    8. < dc:subject.classification > Treballs de fi de grau </ dc:subject.classification >

    9. < dc:subject.other > Algebraic geometry </ dc:subject.other >

    10. < dc:subject.other > Homology </ dc:subject.other >

    11. < dc:subject.other > Galois theory </ dc:subject.other >

    12. < dc:subject.other > Group theory </ dc:subject.other >

    13. < dc:subject.other > Bachelor's theses </ dc:subject.other >

    14. < dcterms:abstract > [en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory. </ dcterms:abstract >

    15. < dcterms:dateAccepted > 2022-04-05T10:14:27Z </ dcterms:dateAccepted >

    16. < dcterms:available > 2022-04-05T10:14:27Z </ dcterms:available >

    17. < dcterms:created > 2022-04-05T10:14:27Z </ dcterms:created >

    18. < dcterms:issued > 2021-06-18 </ dcterms:issued >

    19. < dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >

    20. < dc:identifier > http://hdl.handle.net/2445/184648 </ dc:identifier >

    21. < dc:language > eng </ dc:language >

    22. < dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >

    23. < dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >

    24. < dc:rights > cc-by-nc-nd (c) Genís Calderer i García, 2021 </ dc:rights >

    25. < dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >

    </ qdc:qualifieddc >

rdf

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. < rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >

    1. < ow:Publication about =" oai:diposit.ub.edu:2445/184648 " >

      1. < dc:title > $p$-adic differential Galois theory and Galois cohomology </ dc:title >

      2. < dc:creator > Calderer i García, Genís </ dc:creator >

      3. < dc:contributor > Crespo Vicente, Teresa </ dc:contributor >

      4. < dc:description > Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Teresa Crespo Vicente </ dc:description >

      5. < dc:description > [en] The goal of this project has been to give a classification of the forms of Picard-Vessiot extensions defined over a differential field with field of constants $\mathbb{Q}_{p}$, which is not algebraically closed, and with differential Galois group $O\left(2, \mathbb{Q}_{p}\right)$ or $S O\left(2, \mathbb{Q}_{p}\right)$. To do so we present a theoretical background in algebraic geometry, group cohomology and differential Galois theory. </ dc:description >

      6. < dc:date > 2022-04-05T10:14:27Z </ dc:date >

      7. < dc:date > 2022-04-05T10:14:27Z </ dc:date >

      8. < dc:date > 2021-06-18 </ dc:date >

      9. < dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >

      10. < dc:identifier > http://hdl.handle.net/2445/184648 </ dc:identifier >

      11. < dc:language > eng </ dc:language >

      12. < dc:rights > http://creativecommons.org/licenses/by-nc-nd/3.0/es/ </ dc:rights >

      13. < dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >

      14. < dc:rights > cc-by-nc-nd (c) Genís Calderer i García, 2021 </ dc:rights >

      15. < dc:source > Treballs Finals de Grau (TFG) - Matemàtiques </ dc:source >

      </ ow:Publication >

    </ rdf:RDF >

Biblioteca de Catalunya Carrer de l'Hospital, 56. 08001 Barcelona Email: catalonica@bnc.cat Tlf.: +34 932 702 300
  • Logotipo de Biblioteca de Catalunya
  • Logotipo de la Generalitat de Catalunya
  • Nota técnica
  • Aviso legal
  • Repositorio OAI