<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > $E_{1}$-Formality of complex algebraic varieties </ dc:title >
< dc:creator > Cirici, Joana </ dc:creator >
< dc:creator > Guillén Santos, Francisco </ dc:creator >
< dc:subject > Singularitats (Matemàtica) </ dc:subject >
< dc:subject > Teoria de l'homotopia </ dc:subject >
< dc:subject > Singularities (Mathematics) </ dc:subject >
< dc:subject > Homotopy theory </ dc:subject >
< dc:description > Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory. </ dc:description >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:date > 2014-11-05 </ dc:date >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:identifier > 1472-2747 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/2445/62303 </ dc:identifier >
< dc:identifier > 646269 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció del document publicat a: http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:relation > Algebraic and Geometric Topology, 2014, vol. 14, p. 3049-3079 </ dc:relation >
< dc:relation > http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:rights > (c) Mathematical Sciences Publishers (MSP), 2014 </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:format > 31 p. </ dc:format >
< dc:format > application/pdf </ dc:format >
< dc:publisher > Mathematical Sciences Publishers (MSP) </ dc:publisher >
< dc:source > Articles publicats en revistes (Matemàtiques i Informàtica) </ dc:source >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_62303#ent0 " >
< dc:creator > Cirici, Joana </ dc:creator >
< dc:creator > Guillén Santos, Francisco </ dc:creator >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:date > 2014-11-05 </ dc:date >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:description > Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory. </ dc:description >
< dc:identifier > 1472-2747 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/2445/62303 </ dc:identifier >
< dc:identifier > 646269 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:publisher > Mathematical Sciences Publishers (MSP) </ dc:publisher >
< dc:relation > Reproducció del document publicat a: http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:relation > Algebraic and Geometric Topology, 2014, vol. 14, p. 3049-3079 </ dc:relation >
< dc:relation > http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:rights > (c) Mathematical Sciences Publishers (MSP), 2014 </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:source > Articles publicats en revistes (Matemàtiques i Informàtica) </ dc:source >
< dc:subject > Singularitats (Matemàtica) </ dc:subject >
< dc:subject > Teoria de l'homotopia </ dc:subject >
< dc:subject > Singularities (Mathematics) </ dc:subject >
< dc:subject > Homotopy theory </ dc:subject >
< dc:title > $E_{1}$-Formality of complex algebraic varieties </ dc:title >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_62303#ent1 " >
< edm:dataProvider > Dipòsit Digital de la Universitat de Barcelona </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > 00925njm 22002777a 4500 </ leader >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Cirici, Joana </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Guillén Santos, Francisco </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2014-11-05 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory. </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 1472-2747 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > http://hdl.handle.net/2445/62303 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 646269 </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > $E_{1}$-Formality of complex algebraic varieties </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< mets ID =" DSpace_ITEM_2445-62303 " OBJID =" hdl:2445/62303 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >
< metsHdr CREATEDATE =" 2024-06-05T00:51:00Z " >
< agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >
< name > Dipòsit Digital de la Universitat de Barcelona </ name >
</ agent >
</ metsHdr >
< dmdSec ID =" DMD_2445_62303 " >
< mdWrap MDTYPE =" MODS " >
< xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Cirici, Joana </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Guillén Santos, Francisco </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2015-02-03T11:38:45Z </ mods:dateAccessioned >
</ mods:extension >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2015-02-03T11:38:45Z </ mods:dateAvailable >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2014-11-05 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" issn " > 1472-2747 </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/2445/62303 </ mods:identifier >
< mods:identifier type =" idgrec " > 646269 </ mods:identifier >
< mods:abstract > Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory. </ mods:abstract >
< mods:language >
< mods:languageTerm authority =" rfc3066 " > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > (c) Mathematical Sciences Publishers (MSP), 2014 </ mods:accessCondition >
< mods:titleInfo >
< mods:title > $E_{1}$-Formality of complex algebraic varieties </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
</ mods:mods >
</ xmlData >
</ mdWrap >
</ dmdSec >
< amdSec ID =" TMD_2445_62303 " >
< rightsMD ID =" RIG_2445_62303 " >
< mdWrap MDTYPE =" OTHER " MIMETYPE =" text/plain " OTHERMDTYPE =" DSpaceDepositLicense " >
< binData > VG90cyBlbHMgbWF0ZXJpYWxzIGluY2xvc29zIGVuIGVsIERpcMOyc2l0IGRpZ2l0YWwgZGUgbGEgVUIgZXN0YW4gc3ViamVjdGVzIGEgbGxpY8OobmNpZXMgQ3JlYXRpdmUgQ29tbW9ucywKcXVlIGVuIGVsIG1vbWVudCBkZSBsbGl1cmFyIGVsIGRvY3VtZW50IGhhIGQnZXNjb2xsaXIgZWwgcHJvcGkgdXN1YXJpLgpTaSB1cyBwbGF1IG5vIG9ibGlkZXUgYXNzaWduYXIgdW5hIGxsaWPDqG5jaWEgYWwgdm9zdHJlIGRvY3VtZW50IS4K </ binData >
</ mdWrap >
</ rightsMD >
</ amdSec >
< amdSec ID =" FO_2445_62303_1 " >
< techMD ID =" TECH_O_2445_62303_1 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/62303/1/646269.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 8ae1a76ee2069f30e8305f61081efe5d </ premis:messageDigest >
</ premis:fixity >
< premis:size > 411780 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > 646269.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< amdSec ID =" FT_2445_62303_3 " >
< techMD ID =" TECH_T_2445_62303_3 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > http://diposit.ub.edu/dspace/bitstream/2445/62303/3/646269.pdf.txt </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 96600cafc685978c5f0614efaa057b39 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 61964 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > text/plain </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > 646269.pdf.txt </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< fileSec >
< fileGrp USE =" ORIGINAL " >
< file ADMID =" FO_2445_62303_1 " CHECKSUM =" 8ae1a76ee2069f30e8305f61081efe5d " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_62303_1 " ID =" BITSTREAM_ORIGINAL_2445_62303_1 " MIMETYPE =" application/pdf " SEQ =" 1 " SIZE =" 411780 " >
</ file >
</ fileGrp >
< fileGrp USE =" TEXT " >
< file ADMID =" FT_2445_62303_3 " CHECKSUM =" 96600cafc685978c5f0614efaa057b39 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_2445_62303_3 " ID =" BITSTREAM_TEXT_2445_62303_3 " MIMETYPE =" text/plain " SEQ =" 3 " SIZE =" 61964 " >
</ file >
</ fileGrp >
</ fileSec >
< structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >
< div ADMID =" DMD_2445_62303 " TYPE =" DSpace Object Contents " >
< div TYPE =" DSpace BITSTREAM " >
</ div >
</ div >
</ structMap >
</ mets >
<?xml version="1.0" encoding="UTF-8" ?>
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:namePart > Cirici, Joana </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Guillén Santos, Francisco </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2015-02-03T11:38:45Z </ mods:dateAvailable >
</ mods:extension >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2015-02-03T11:38:45Z </ mods:dateAccessioned >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2014-11-05 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" issn " > 1472-2747 </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/2445/62303 </ mods:identifier >
< mods:identifier type =" idgrec " > 646269 </ mods:identifier >
< mods:abstract > Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory. </ mods:abstract >
< mods:language >
< mods:languageTerm > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > info:eu-repo/semantics/openAccess </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > (c) Mathematical Sciences Publishers (MSP), 2014 </ mods:accessCondition >
< mods:titleInfo >
< mods:title > $E_{1}$-Formality of complex algebraic varieties </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
< mods:genre > info:eu-repo/semantics/publishedVersion </ mods:genre >
</ mods:mods >
<?xml version="1.0" encoding="UTF-8" ?>
< qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >
< dc:title > $E_{1}$-Formality of complex algebraic varieties </ dc:title >
< dc:creator > Cirici, Joana </ dc:creator >
< dc:creator > Guillén Santos, Francisco </ dc:creator >
< dc:subject.classification > Singularitats (Matemàtica) </ dc:subject.classification >
< dc:subject.classification > Teoria de l'homotopia </ dc:subject.classification >
< dc:subject.other > Singularities (Mathematics) </ dc:subject.other >
< dc:subject.other > Homotopy theory </ dc:subject.other >
< dcterms:abstract > Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory. </ dcterms:abstract >
< dcterms:dateAccepted > 2015-02-03T11:38:45Z </ dcterms:dateAccepted >
< dcterms:available > 2015-02-03T11:38:45Z </ dcterms:available >
< dcterms:created > 2015-02-03T11:38:45Z </ dcterms:created >
< dcterms:issued > 2014-11-05 </ dcterms:issued >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:identifier > 1472-2747 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/2445/62303 </ dc:identifier >
< dc:identifier > 646269 </ dc:identifier >
< dc:identifier.issn > 1472-2747 </ dc:identifier.issn >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció del document publicat a: http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:relation > Algebraic and Geometric Topology, 2014, vol. 14, p. 3049-3079 </ dc:relation >
< dc:relation > http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > (c) Mathematical Sciences Publishers (MSP), 2014 </ dc:rights >
< dc:publisher > Mathematical Sciences Publishers (MSP) </ dc:publisher >
< dc:source > Articles publicats en revistes (Matemàtiques i Informàtica) </ dc:source >
</ qdc:qualifieddc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >
< ow:Publication about =" oai:diposit.ub.edu:2445/62303 " >
< dc:title > $E_{1}$-Formality of complex algebraic varieties </ dc:title >
< dc:creator > Cirici, Joana </ dc:creator >
< dc:creator > Guillén Santos, Francisco </ dc:creator >
< dc:description > Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory. </ dc:description >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:date > 2014-11-05 </ dc:date >
< dc:date > 2015-02-03T11:38:45Z </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:identifier > 1472-2747 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/2445/62303 </ dc:identifier >
< dc:identifier > 646269 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció del document publicat a: http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:relation > Algebraic and Geometric Topology, 2014, vol. 14, p. 3049-3079 </ dc:relation >
< dc:relation > http://dx.doi.org/10.2140/agt.2014.14.3049 </ dc:relation >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > (c) Mathematical Sciences Publishers (MSP), 2014 </ dc:rights >
< dc:publisher > Mathematical Sciences Publishers (MSP) </ dc:publisher >
< dc:source > Articles publicats en revistes (Matemàtiques i Informàtica) </ dc:source >
</ ow:Publication >
</ rdf:RDF >