<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ dc:title >
< dc:creator > Salvador Sedano, Pedro </ dc:creator >
< dc:creator > Mayer, István </ dc:creator >
< dc:subject > Anàlisi d'error (Matemàtica) </ dc:subject >
< dc:subject > Error analysis (Mathematics) </ dc:subject >
< dc:subject > Dinàmica molecular </ dc:subject >
< dc:subject > Molecular dynamics </ dc:subject >
< dc:subject > Pertorbació (Matemàtica) </ dc:subject >
< dc:subject > Perturbation (Mathematics) </ dc:subject >
< dc:subject > Sistemes hamiltonians </ dc:subject >
< dc:subject > Hamiltonian systems </ dc:subject >
< dc:description > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ dc:description >
< dc:description > Open Access funding provided thanks to the CRUE-CSIC agreement with Wiley </ dc:description >
< dc:date > 2022-04-15 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:type > peer-reviewed </ dc:type >
< dc:identifier > http://hdl.handle.net/10256/19745 </ dc:identifier >
< dc:relation > info:eu-repo/semantics/altIdentifier/doi/10.1002/qua.26777 </ dc:relation >
< dc:relation > info:eu-repo/semantics/altIdentifier/issn/0020-7608 </ dc:relation >
< dc:relation > info:eu-repo/semantics/altIdentifier/eissn/1097-461X </ dc:relation >
< dc:language > eng </ dc:language >
< dc:source > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ dc:source >
< dc:source > Articles publicats (D-Q) </ dc:source >
< dc:rights > Attribution-NonCommercial-NoDerivatives 4.0 International </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:format > application/pdf </ dc:format >
< dc:publisher > Wiley </ dc:publisher >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< d:DIDL schemaLocation =" urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd " >
< d:DIDLInfo >
< dcterms:created schemaLocation =" http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd " > 2021-07-27T09:49:55Z </ dcterms:created >
</ d:DIDLInfo >
< d:Item id =" hdl_10256_19745 " >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< dii:Identifier schemaLocation =" urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd " > urn:hdl:10256/19745 </ dii:Identifier >
</ d:Statement >
</ d:Descriptor >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ dc:title >
< dc:creator > Salvador Sedano, Pedro </ dc:creator >
< dc:creator > Mayer, István </ dc:creator >
< dc:subject > Anàlisi d'error (Matemàtica) </ dc:subject >
< dc:subject > Error analysis (Mathematics) </ dc:subject >
< dc:subject > Dinàmica molecular </ dc:subject >
< dc:subject > Molecular dynamics </ dc:subject >
< dc:subject > Pertorbació (Matemàtica) </ dc:subject >
< dc:subject > Perturbation (Mathematics) </ dc:subject >
< dc:subject > Sistemes hamiltonians </ dc:subject >
< dc:subject > Hamiltonian systems </ dc:subject >
< dc:description > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ dc:description >
< dc:date > 2021-07-27T09:49:55Z </ dc:date >
< dc:date > 2021-07-27T09:49:55Z </ dc:date >
< dc:date > 2022-04-15 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > 0020-7608 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10256/19745 </ dc:identifier >
< dc:identifier > https://doi.org/10.1002/qua.26777 </ dc:identifier >
< dc:identifier > 034210 </ dc:identifier >
< dc:identifier > 1097-461X </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció digital del document publicat a: https://doi.org/10.1002/qua.26777 </ dc:relation >
< dc:relation > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ dc:relation >
< dc:relation > Articles publicats (D-Q) </ dc:relation >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution-NonCommercial-NoDerivatives 4.0 International </ dc:rights >
< dc:publisher > Wiley </ dc:publisher >
</ oai_dc:dc >
</ d:Statement >
</ d:Descriptor >
< d:Component id =" 10256_19745_4 " >
</ d:Component >
</ d:Item >
</ d:DIDL >
<?xml version="1.0" encoding="UTF-8" ?>
< dim:dim schemaLocation =" http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd " >
< dim:field element =" contributor " mdschema =" dc " qualifier =" author " > Salvador Sedano, Pedro </ dim:field >
< dim:field element =" contributor " mdschema =" dc " qualifier =" author " > Mayer, István </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" accessioned " > 2021-07-27T09:49:55Z </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" available " > 2021-07-27T09:49:55Z </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" issued " > 2022-04-15 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" issn " > 0020-7608 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" uri " > http://hdl.handle.net/10256/19745 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" doi " > https://doi.org/10.1002/qua.26777 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" idgrec " > 034210 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" eissn " > 1097-461X </ dim:field >
< dim:field element =" description " mdschema =" dc " qualifier =" abstract " > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ dim:field >
< dim:field element =" description " mdschema =" dc " qualifier =" provenance " > Submitted by CLAUDIA PLANA (claudia.plana@udg.edu) on 2021-07-27T09:49:55Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) BasisSetSuperposition.pdf: 2033674 bytes, checksum: 3183645cc5f7cc5f7c62543968f9047a (MD5) </ dim:field >
< dim:field element =" description " mdschema =" dc " qualifier =" provenance " > Made available in DSpace on 2021-07-27T09:49:55Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) BasisSetSuperposition.pdf: 2033674 bytes, checksum: 3183645cc5f7cc5f7c62543968f9047a (MD5) Previous issue date: 2021-07-26 </ dim:field >
< dim:field element =" description " mdschema =" dc " qualifier =" sponsorship " > Open Access funding provided thanks to the CRUE-CSIC agreement with Wiley </ dim:field >
< dim:field element =" format " mdschema =" dc " qualifier =" mimetype " > application/pdf </ dim:field >
< dim:field element =" language " mdschema =" dc " qualifier =" iso " > eng </ dim:field >
< dim:field element =" publisher " mdschema =" dc " > Wiley </ dim:field >
< dim:field element =" relation " mdschema =" dc " qualifier =" isformatof " > Reproducció digital del document publicat a: https://doi.org/10.1002/qua.26777 </ dim:field >
< dim:field element =" relation " mdschema =" dc " qualifier =" ispartof " > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ dim:field >
< dim:field element =" relation " mdschema =" dc " qualifier =" ispartofseries " > Articles publicats (D-Q) </ dim:field >
< dim:field element =" rights " mdschema =" dc " > Attribution-NonCommercial-NoDerivatives 4.0 International </ dim:field >
< dim:field element =" rights " mdschema =" dc " qualifier =" uri " > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ dim:field >
< dim:field element =" rights " mdschema =" dc " qualifier =" accessRights " > info:eu-repo/semantics/openAccess </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Anàlisi d'error (Matemàtica) </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Error analysis (Mathematics) </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Dinàmica molecular </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Molecular dynamics </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Pertorbació (Matemàtica) </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Perturbation (Mathematics) </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Sistemes hamiltonians </ dim:field >
< dim:field element =" subject " mdschema =" dc " > Hamiltonian systems </ dim:field >
< dim:field element =" title " mdschema =" dc " > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ dim:field >
< dim:field element =" type " mdschema =" dc " > info:eu-repo/semantics/article </ dim:field >
< dim:field element =" type " mdschema =" dc " qualifier =" version " > info:eu-repo/semantics/publishedVersion </ dim:field >
< dim:field element =" type " mdschema =" dc " qualifier =" peerreviewed " > peer-reviewed </ dim:field >
</ dim:dim >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:dugi-doc.udg.edu:10256_--_19745#ent0 " >
< dc:creator > Salvador Sedano, Pedro </ dc:creator >
< dc:creator > Mayer, István </ dc:creator >
< dc:date > 2022-04-15 </ dc:date >
< dc:description > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ dc:description >
< dc:description > Open Access funding provided thanks to the CRUE-CSIC agreement with Wiley </ dc:description >
< dc:identifier > http://hdl.handle.net/10256/19745 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:publisher > Wiley </ dc:publisher >
< dc:relation > info:eu-repo/semantics/altIdentifier/doi/10.1002/qua.26777 </ dc:relation >
< dc:relation > info:eu-repo/semantics/altIdentifier/issn/0020-7608 </ dc:relation >
< dc:relation > info:eu-repo/semantics/altIdentifier/eissn/1097-461X </ dc:relation >
< dc:rights > Attribution-NonCommercial-NoDerivatives 4.0 International </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:source > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ dc:source >
< dc:source > Articles publicats (D-Q) </ dc:source >
< dc:subject > Anàlisi d'error (Matemàtica) </ dc:subject >
< dc:subject > Error analysis (Mathematics) </ dc:subject >
< dc:subject > Dinàmica molecular </ dc:subject >
< dc:subject > Molecular dynamics </ dc:subject >
< dc:subject > Pertorbació (Matemàtica) </ dc:subject >
< dc:subject > Perturbation (Mathematics) </ dc:subject >
< dc:subject > Sistemes hamiltonians </ dc:subject >
< dc:subject > Hamiltonian systems </ dc:subject >
< dc:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ dc:title >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:type > peer-reviewed </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:dugi-doc.udg.edu:10256_--_19745#ent1 " >
< edm:dataProvider > DUGiDocs. Recerca </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< thesis schemaLocation =" http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd " >
< title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ title >
< creator > Salvador Sedano, Pedro </ creator >
< creator > Mayer, István </ creator >
< subject > Anàlisi d'error (Matemàtica) </ subject >
< subject > Error analysis (Mathematics) </ subject >
< subject > Dinàmica molecular </ subject >
< subject > Molecular dynamics </ subject >
< subject > Pertorbació (Matemàtica) </ subject >
< subject > Perturbation (Mathematics) </ subject >
< subject > Sistemes hamiltonians </ subject >
< subject > Hamiltonian systems </ subject >
< description > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ description >
< date > 2021-07-27 </ date >
< date > 2021-07-27 </ date >
< date > 2022-04-15 </ date >
< type > info:eu-repo/semantics/article </ type >
< identifier > 0020-7608 </ identifier >
< identifier > http://hdl.handle.net/10256/19745 </ identifier >
< identifier > https://doi.org/10.1002/qua.26777 </ identifier >
< identifier > 034210 </ identifier >
< identifier > 1097-461X </ identifier >
< language > eng </ language >
< relation > Reproducció digital del document publicat a: https://doi.org/10.1002/qua.26777 </ relation >
< relation > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ relation >
< relation > Articles publicats (D-Q) </ relation >
< rights > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ rights >
< rights > info:eu-repo/semantics/openAccess </ rights >
< rights > Attribution-NonCommercial-NoDerivatives 4.0 International </ rights >
< publisher > Wiley </ publisher >
</ thesis >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > 00925njm 22002777a 4500 </ leader >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Salvador Sedano, Pedro </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Mayer, István </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2022-04-15 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 0020-7608 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > http://hdl.handle.net/10256/19745 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > https://doi.org/10.1002/qua.26777 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 034210 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 1097-461X </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Anàlisi d'error (Matemàtica) </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Error analysis (Mathematics) </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Dinàmica molecular </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Molecular dynamics </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Pertorbació (Matemàtica) </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Perturbation (Mathematics) </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Sistemes hamiltonians </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Hamiltonian systems </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< mets ID =" DSpace_ITEM_10256-19745 " OBJID =" hdl:10256/19745 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >
< metsHdr CREATEDATE =" 2023-05-21T19:34:56Z " >
< agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >
< name > DUGiDocs </ name >
</ agent >
</ metsHdr >
< dmdSec ID =" DMD_10256_19745 " >
< mdWrap MDTYPE =" MODS " >
< xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Salvador Sedano, Pedro </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Mayer, István </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2021-07-27T09:49:55Z </ mods:dateAccessioned >
</ mods:extension >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2021-07-27T09:49:55Z </ mods:dateAvailable >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022-04-15 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" issn " > 0020-7608 </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/10256/19745 </ mods:identifier >
< mods:identifier type =" doi " > https://doi.org/10.1002/qua.26777 </ mods:identifier >
< mods:identifier type =" idgrec " > 034210 </ mods:identifier >
< mods:identifier type =" eissn " > 1097-461X </ mods:identifier >
< mods:abstract > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ mods:abstract >
< mods:language >
< mods:languageTerm authority =" rfc3066 " > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > Attribution-NonCommercial-NoDerivatives 4.0 International </ mods:accessCondition >
< mods:subject >
< mods:topic > Anàlisi d'error (Matemàtica) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Error analysis (Mathematics) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Dinàmica molecular </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Molecular dynamics </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Pertorbació (Matemàtica) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Perturbation (Mathematics) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Sistemes hamiltonians </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Hamiltonian systems </ mods:topic >
</ mods:subject >
< mods:titleInfo >
< mods:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
</ mods:mods >
</ xmlData >
</ mdWrap >
</ dmdSec >
< amdSec ID =" TMD_10256_19745 " >
< rightsMD ID =" RIG_10256_19745 " >
< mdWrap MDTYPE =" OTHER " MIMETYPE =" text/plain " OTHERMDTYPE =" DSpaceDepositLicense " >
< binData > Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= </ binData >
</ mdWrap >
</ rightsMD >
</ amdSec >
< amdSec ID =" FO_10256_19745_4 " >
< techMD ID =" TECH_O_10256_19745_4 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://dugi-doc.udg.edu/bitstream/10256/19745/4/BasisSetSuperposition.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 583a7d8f59dc5e37281248fee62801a8 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 2033174 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > BasisSetSuperposition.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< fileSec >
< fileGrp USE =" ORIGINAL " >
< file ADMID =" FO_10256_19745_4 " CHECKSUM =" 583a7d8f59dc5e37281248fee62801a8 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_10256_19745_4 " ID =" BITSTREAM_ORIGINAL_10256_19745_4 " MIMETYPE =" application/pdf " SEQ =" 4 " SIZE =" 2033174 " >
</ file >
</ fileGrp >
</ fileSec >
< structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >
< div ADMID =" DMD_10256_19745 " TYPE =" DSpace Object Contents " >
< div TYPE =" DSpace BITSTREAM " >
</ div >
</ div >
</ structMap >
</ mets >
<?xml version="1.0" encoding="UTF-8" ?>
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:namePart > Salvador Sedano, Pedro </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Mayer, István </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2021-07-27T09:49:55Z </ mods:dateAvailable >
</ mods:extension >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2021-07-27T09:49:55Z </ mods:dateAccessioned >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022-04-15 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" issn " > 0020-7608 </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/10256/19745 </ mods:identifier >
< mods:identifier type =" doi " > https://doi.org/10.1002/qua.26777 </ mods:identifier >
< mods:identifier type =" idgrec " > 034210 </ mods:identifier >
< mods:identifier type =" eissn " > 1097-461X </ mods:identifier >
< mods:abstract > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ mods:abstract >
< mods:language >
< mods:languageTerm > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > info:eu-repo/semantics/openAccess </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > Attribution-NonCommercial-NoDerivatives 4.0 International </ mods:accessCondition >
< mods:subject >
< mods:topic > Anàlisi d'error (Matemàtica) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Error analysis (Mathematics) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Dinàmica molecular </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Molecular dynamics </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Pertorbació (Matemàtica) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Perturbation (Mathematics) </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Sistemes hamiltonians </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Hamiltonian systems </ mods:topic >
</ mods:subject >
< mods:titleInfo >
< mods:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
</ mods:mods >
<?xml version="1.0" encoding="UTF-8" ?>
< datacite:resource schemaLocation =" http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4-2/metadata.xsd " >
< datacite:identifier identifierType =" Handle " > http://hdl.handle.net/10256/19745 </ datacite:identifier >
< datacite:titles >
< datacite:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ datacite:title >
</ datacite:titles >
< datacite:creators >
< datacite:creator >
< datacite:creatorName > Salvador Sedano, Pedro </ datacite:creatorName >
< datacite:nameIdentifier nameIdentifierScheme =" ORCID " schemeURI =" http://orcid.org/ " > 0000-0003-1823-7295 </ datacite:nameIdentifier >
</ datacite:creator >
< datacite:creator >
< datacite:creatorName > Mayer, István </ datacite:creatorName >
</ datacite:creator >
</ datacite:creators >
< datacite:subjects >
< datacite:subject > Anàlisi d'error (Matemàtica) </ datacite:subject >
< datacite:subject > Error analysis (Mathematics) </ datacite:subject >
< datacite:subject > Dinàmica molecular </ datacite:subject >
< datacite:subject > Molecular dynamics </ datacite:subject >
< datacite:subject > Pertorbació (Matemàtica) </ datacite:subject >
< datacite:subject > Perturbation (Mathematics) </ datacite:subject >
< datacite:subject > Sistemes hamiltonians </ datacite:subject >
< datacite:subject > Hamiltonian systems </ datacite:subject >
</ datacite:subjects >
< datacite:descriptions >
< datacite:description descriptionType =" Abstract " > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ datacite:description >
</ datacite:descriptions >
< datacite:dates >
< datacite:date dateType =" Issued " > 2022-04-15 </ datacite:date >
</ datacite:dates >
< datacite:publicationYear > 2022 </ datacite:publicationYear >
< datacite:languages >
< datacite:language > eng </ datacite:language >
</ datacite:languages >
< datacite:relatedIdentifiers >
< datacite:relatedIdentifier relatedIdentifierType =" URL " relationType =" IsSupplementTo " > 0020-7608 </ datacite:relatedIdentifier >
< datacite:relatedIdentifier relatedIdentifierType =" DOI " relationType =" IsSupplementTo " > https://doi.org/10.1002/qua.26777 </ datacite:relatedIdentifier >
< datacite:relatedIdentifier relatedIdentifierType =" URL " relationType =" IsSupplementTo " > 034210 </ datacite:relatedIdentifier >
< datacite:relatedIdentifier relatedIdentifierType =" URL " relationType =" IsSupplementTo " > 1097-461X </ datacite:relatedIdentifier >
</ datacite:relatedIdentifiers >
< datacite:rightsList >
< datacite:rights > Attribution-NonCommercial-NoDerivatives 4.0 International </ datacite:rights >
< datacite:rights rightsURI =" http://creativecommons.org/licenses/by-nc-nd/4.0/ " > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ datacite:rights >
< datacite:rights rightsURI =" info:eu-repo/semantics/openAccess " > info:eu-repo/semantics/openAccess </ datacite:rights >
</ datacite:rightsList >
< datacite:formats >
< datacite:format > application/pdf </ datacite:format >
</ datacite:formats >
< datacite:publisher > Wiley </ datacite:publisher >
</ datacite:resource >
<?xml version="1.0" encoding="UTF-8" ?>
< atom:entry schemaLocation =" http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml " >
< atom:id > http://hdl.handle.net/10256/19745/ore.xml </ atom:id >
< atom:published > 2021-07-27T09:49:55Z </ atom:published >
< atom:updated > 2021-07-27T09:49:55Z </ atom:updated >
< atom:source >
< atom:generator > DUGiDocs </ atom:generator >
</ atom:source >
< atom:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ atom:title >
< atom:author >
< atom:name > Salvador Sedano, Pedro </ atom:name >
</ atom:author >
< atom:author >
< atom:name > Mayer, István </ atom:name >
</ atom:author >
< oreatom:triples >
< rdf:Description about =" http://hdl.handle.net/10256/19745/ore.xml#atom " >
< dcterms:modified > 2021-07-27T09:49:55Z </ dcterms:modified >
</ rdf:Description >
< rdf:Description about =" https://dugi-doc.udg.edu/bitstream/10256/19745/4/BasisSetSuperposition.pdf " >
< dcterms:description > ORIGINAL </ dcterms:description >
</ rdf:Description >
< rdf:Description about =" https://dugi-doc.udg.edu/bitstream/10256/19745/3/license.txt " >
< dcterms:description > LICENSE </ dcterms:description >
</ rdf:Description >
< rdf:Description about =" https://dugi-doc.udg.edu/bitstream/10256/19745/2/license_rdf " >
< dcterms:description > CC-LICENSE </ dcterms:description >
</ rdf:Description >
</ oreatom:triples >
</ atom:entry >
<?xml version="1.0" encoding="UTF-8" ?>
< qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >
< dc:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ dc:title >
< dc:creator > Salvador Sedano, Pedro </ dc:creator >
< dc:creator > Mayer, István </ dc:creator >
< dc:subject > Anàlisi d'error (Matemàtica) </ dc:subject >
< dc:subject > Error analysis (Mathematics) </ dc:subject >
< dc:subject > Dinàmica molecular </ dc:subject >
< dc:subject > Molecular dynamics </ dc:subject >
< dc:subject > Pertorbació (Matemàtica) </ dc:subject >
< dc:subject > Perturbation (Mathematics) </ dc:subject >
< dc:subject > Sistemes hamiltonians </ dc:subject >
< dc:subject > Hamiltonian systems </ dc:subject >
< dcterms:abstract > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ dcterms:abstract >
< dcterms:dateAccepted > 2021-07-27T09:49:55Z </ dcterms:dateAccepted >
< dcterms:available > 2021-07-27T09:49:55Z </ dcterms:available >
< dcterms:created > 2021-07-27T09:49:55Z </ dcterms:created >
< dcterms:issued > 2022-04-15 </ dcterms:issued >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > 0020-7608 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10256/19745 </ dc:identifier >
< dc:identifier > https://doi.org/10.1002/qua.26777 </ dc:identifier >
< dc:identifier > 034210 </ dc:identifier >
< dc:identifier > 1097-461X </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció digital del document publicat a: https://doi.org/10.1002/qua.26777 </ dc:relation >
< dc:relation > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ dc:relation >
< dc:relation > Articles publicats (D-Q) </ dc:relation >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution-NonCommercial-NoDerivatives 4.0 International </ dc:rights >
< dc:publisher > Wiley </ dc:publisher >
</ qdc:qualifieddc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >
< ow:Publication about =" oai:dugi-doc.udg.edu:10256/19745 " >
< dc:title > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ dc:title >
< dc:creator > Salvador Sedano, Pedro </ dc:creator >
< dc:creator > Mayer, István </ dc:creator >
< dc:subject > Anàlisi d'error (Matemàtica) </ dc:subject >
< dc:subject > Error analysis (Mathematics) </ dc:subject >
< dc:subject > Dinàmica molecular </ dc:subject >
< dc:subject > Molecular dynamics </ dc:subject >
< dc:subject > Pertorbació (Matemàtica) </ dc:subject >
< dc:subject > Perturbation (Mathematics) </ dc:subject >
< dc:subject > Sistemes hamiltonians </ dc:subject >
< dc:subject > Hamiltonian systems </ dc:subject >
< dc:description > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ dc:description >
< dc:date > 2021-07-27T09:49:55Z </ dc:date >
< dc:date > 2021-07-27T09:49:55Z </ dc:date >
< dc:date > 2022-04-15 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > 0020-7608 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10256/19745 </ dc:identifier >
< dc:identifier > https://doi.org/10.1002/qua.26777 </ dc:identifier >
< dc:identifier > 034210 </ dc:identifier >
< dc:identifier > 1097-461X </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Reproducció digital del document publicat a: https://doi.org/10.1002/qua.26777 </ dc:relation >
< dc:relation > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ dc:relation >
< dc:relation > Articles publicats (D-Q) </ dc:relation >
< dc:rights > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution-NonCommercial-NoDerivatives 4.0 International </ dc:rights >
< dc:publisher > Wiley </ dc:publisher >
</ ow:Publication >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< metadata schemaLocation =" http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd " >
< element name =" dc " >
< element name =" contributor " >
< element name =" author " >
< element name =" none " >
< field name =" value " > Salvador Sedano, Pedro </ field >
< field name =" value " > Mayer, István </ field >
</ element >
</ element >
</ element >
< element name =" date " >
< element name =" accessioned " >
< element name =" none " >
< field name =" value " > 2021-07-27T09:49:55Z </ field >
</ element >
</ element >
< element name =" available " >
< element name =" none " >
< field name =" value " > 2021-07-27T09:49:55Z </ field >
</ element >
</ element >
< element name =" issued " >
< element name =" none " >
< field name =" value " > 2022-04-15 </ field >
</ element >
</ element >
</ element >
< element name =" identifier " >
< element name =" issn " >
< element name =" none " >
< field name =" value " > 0020-7608 </ field >
</ element >
</ element >
< element name =" uri " >
< element name =" none " >
< field name =" value " > http://hdl.handle.net/10256/19745 </ field >
</ element >
</ element >
< element name =" doi " >
< element name =" none " >
< field name =" value " > https://doi.org/10.1002/qua.26777 </ field >
</ element >
</ element >
< element name =" idgrec " >
< element name =" none " >
< field name =" value " > 034210 </ field >
</ element >
</ element >
< element name =" eissn " >
< element name =" none " >
< field name =" value " > 1097-461X </ field >
</ element >
</ element >
</ element >
< element name =" description " >
< element name =" abstract " >
< element name =" none " >
< field name =" value " > We present an alternative perturbational approach free of basis set superposition error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained from a hermitized CHA Fock operator. The final expression shows a considerable simplification of the method as compared to the previous CHA-MP2 formalism. Numerical full geometry optimizations of water and hydrogen fluoride dimers and potential energy surfaces for helium and argon dimers for several basis sets are presented. The present method is compared to both the counterpoise and previous CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all three methods. However, the wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is not as robust as the original non-hermitian CHA-MP2 formulation </ field >
</ element >
</ element >
< element name =" provenance " >
< element name =" none " >
< field name =" value " > Submitted by CLAUDIA PLANA (claudia.plana@udg.edu) on 2021-07-27T09:49:55Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) BasisSetSuperposition.pdf: 2033674 bytes, checksum: 3183645cc5f7cc5f7c62543968f9047a (MD5) </ field >
< field name =" value " > Made available in DSpace on 2021-07-27T09:49:55Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) BasisSetSuperposition.pdf: 2033674 bytes, checksum: 3183645cc5f7cc5f7c62543968f9047a (MD5) Previous issue date: 2021-07-26 </ field >
</ element >
</ element >
< element name =" sponsorship " >
< element name =" none " >
< field name =" value " > Open Access funding provided thanks to the CRUE-CSIC agreement with Wiley </ field >
</ element >
</ element >
</ element >
< element name =" format " >
< element name =" mimetype " >
< element name =" none " >
< field name =" value " > application/pdf </ field >
</ element >
</ element >
</ element >
< element name =" language " >
< element name =" iso " >
< element name =" none " >
< field name =" value " > eng </ field >
</ element >
</ element >
</ element >
< element name =" publisher " >
< element name =" none " >
< field name =" value " > Wiley </ field >
</ element >
</ element >
< element name =" relation " >
< element name =" isformatof " >
< element name =" none " >
< field name =" value " > Reproducció digital del document publicat a: https://doi.org/10.1002/qua.26777 </ field >
</ element >
</ element >
< element name =" ispartof " >
< element name =" none " >
< field name =" value " > International Journal of Quantum Chemistry, 2021, vol. 122, núm. 8, p. e26777 </ field >
</ element >
</ element >
< element name =" ispartofseries " >
< element name =" none " >
< field name =" value " > Articles publicats (D-Q) </ field >
</ element >
</ element >
</ element >
< element name =" rights " >
< element name =" none " >
< field name =" value " > Attribution-NonCommercial-NoDerivatives 4.0 International </ field >
</ element >
< element name =" uri " >
< element name =" none " >
< field name =" value " > http://creativecommons.org/licenses/by-nc-nd/4.0/ </ field >
</ element >
</ element >
< element name =" accessRights " >
< element name =" none " >
< field name =" value " > info:eu-repo/semantics/openAccess </ field >
</ element >
</ element >
</ element >
< element name =" subject " >
< element name =" none " >
< field name =" value " > Anàlisi d'error (Matemàtica) </ field >
< field name =" value " > Error analysis (Mathematics) </ field >
< field name =" value " > Dinàmica molecular </ field >
< field name =" value " > Molecular dynamics </ field >
< field name =" value " > Pertorbació (Matemàtica) </ field >
< field name =" value " > Perturbation (Mathematics) </ field >
< field name =" value " > Sistemes hamiltonians </ field >
< field name =" value " > Hamiltonian systems </ field >
</ element >
</ element >
< element name =" title " >
< element name =" none " >
< field name =" value " > A basis set superposition error-free second-order perturbation theory from Hermitian chemical Hamiltonian approach self-consistent field canonic orbitals </ field >
</ element >
</ element >
< element name =" type " >
< element name =" none " >
< field name =" value " > info:eu-repo/semantics/article </ field >
</ element >
< element name =" version " >
< element name =" none " >
< field name =" value " > info:eu-repo/semantics/publishedVersion </ field >
</ element >
</ element >
< element name =" peerreviewed " >
< element name =" none " >
< field name =" value " > peer-reviewed </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" adm " >
< element name =" sets " >
< element name =" hidden " >
< element name =" none " >
< field name =" value " > rc1 </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" bundles " >
< element name =" bundle " >
< field name =" name " > ORIGINAL </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > BasisSetSuperposition.pdf </ field >
< field name =" originalName " > BasisSetSuperposition.pdf </ field >
< field name =" format " > application/pdf </ field >
< field name =" size " > 2033174 </ field >
< field name =" url " > https://dugi-doc.udg.edu/bitstream/10256/19745/4/BasisSetSuperposition.pdf </ field >
< field name =" checksum " > 583a7d8f59dc5e37281248fee62801a8 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 4 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > LICENSE </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > license.txt </ field >
< field name =" originalName " > license.txt </ field >
< field name =" format " > text/plain </ field >
< field name =" size " > 1748 </ field >
< field name =" url " > https://dugi-doc.udg.edu/bitstream/10256/19745/3/license.txt </ field >
< field name =" checksum " > 8a4605be74aa9ea9d79846c1fba20a33 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 3 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > CC-LICENSE </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > license_rdf </ field >
< field name =" originalName " > license_rdf </ field >
< field name =" format " > application/rdf+xml; charset=utf-8 </ field >
< field name =" size " > 805 </ field >
< field name =" url " > https://dugi-doc.udg.edu/bitstream/10256/19745/2/license_rdf </ field >
< field name =" checksum " > 4460e5956bc1d1639be9ae6146a50347 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 2 </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" others " >
< field name =" handle " > 10256/19745 </ field >
< field name =" identifier " > oai:dugi-doc.udg.edu:10256/19745 </ field >
< field name =" lastModifyDate " > 2022-09-26 10:07:48.73 </ field >
</ element >
< element name =" repository " >
< field name =" name " > DUGiDocs </ field >
< field name =" mail " > oriol.olive@udg.edu </ field >
</ element >
< element name =" license " >
< field name =" bin " > Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= </ field >
</ element >
</ metadata >