<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ dc:title >
< dc:creator > Guevara, Javier </ dc:creator >
< dc:creator > Gené Mola, Jordi </ dc:creator >
< dc:creator > Gregorio López, Eduard </ dc:creator >
< dc:creator > Auat Cheein, Fernando A. </ dc:creator >
< dc:subject > Spectral analysis </ dc:subject >
< dc:subject > Filtering algorithms </ dc:subject >
< dc:subject > 3D point cloud registration </ dc:subject >
< dc:subject > Robot localization </ dc:subject >
< dc:description > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ dc:description >
< dc:description > This project has been supported by the National Agency of Research and Development (ANID, ex-Conicyt) under Fondecyt grant 1171760, Basal grant FB0008 and National Agency for Research and Devel- opment (ANID)/ PCHA/ Doctorado Nacional/ 2020-21200700. The authors would like to thank to Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00) for partially funding this research. The Spanish Ministry of Education is thanked for Mr. J. Gene ́’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) for their support during data acquisition. </ dc:description >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:date > 2021-11-18 </ dc:date >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/acceptedVersion </ dc:type >
< dc:identifier > https://doi.org/10.1109/JSEN.2021.3129340 </ dc:identifier >
< dc:identifier > 1530-437X </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10459.1/72508 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ </ dc:relation >
< dc:relation > Versió postprint del document publicat a: https://doi.org/10.1109/JSEN.2021.3129340 </ dc:relation >
< dc:relation > IEEE Sensors Journal, 2021 </ dc:relation >
< dc:rights > (c) IEEE, 2021 </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:format > application/pdf </ dc:format >
< dc:publisher > Institute of Electrical and Electronics Engineers </ dc:publisher >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< d:DIDL schemaLocation =" urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd " >
< d:Item id =" hdl_10459.1_72508 " >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< dii:Identifier schemaLocation =" urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd " > urn:hdl:10459.1/72508 </ dii:Identifier >
</ d:Statement >
</ d:Descriptor >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ dc:title >
< dc:creator > Guevara, Javier </ dc:creator >
< dc:creator > Gené Mola, Jordi </ dc:creator >
< dc:creator > Gregorio López, Eduard </ dc:creator >
< dc:creator > Auat Cheein, Fernando A. </ dc:creator >
< dc:subject > Spectral analysis </ dc:subject >
< dc:subject > Filtering algorithms </ dc:subject >
< dc:subject > 3D point cloud registration </ dc:subject >
< dc:subject > Robot localization </ dc:subject >
< dc:description > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ dc:description >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:date > 2021-11-18 </ dc:date >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > https://doi.org/10.1109/JSEN.2021.3129340 </ dc:identifier >
< dc:identifier > 031824 </ dc:identifier >
< dc:identifier > 1530-437X </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10459.1/72508 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Versió postprint del document publicat a: https://doi.org/10.1109/JSEN.2021.3129340 </ dc:relation >
< dc:relation > IEEE Sensors Journal, 2021 </ dc:relation >
< dc:relation > info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ </ dc:relation >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > (c) IEEE, 2021 </ dc:rights >
< dc:publisher > Institute of Electrical and Electronics Engineers </ dc:publisher >
</ oai_dc:dc >
</ d:Statement >
</ d:Descriptor >
< d:Component id =" 10459.1_72508_4 " >
</ d:Component >
</ d:Item >
</ d:DIDL >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:repositori.udl.cat:10459.1_--_72508#ent0 " >
< dc:creator > Guevara, Javier </ dc:creator >
< dc:creator > Gené Mola, Jordi </ dc:creator >
< dc:creator > Gregorio López, Eduard </ dc:creator >
< dc:creator > Auat Cheein, Fernando A. </ dc:creator >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:date > 2021-11-18 </ dc:date >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:description > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ dc:description >
< dc:description > This project has been supported by the National Agency of Research and Development (ANID, ex-Conicyt) under Fondecyt grant 1171760, Basal grant FB0008 and National Agency for Research and Devel- opment (ANID)/ PCHA/ Doctorado Nacional/ 2020-21200700. The authors would like to thank to Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00) for partially funding this research. The Spanish Ministry of Education is thanked for Mr. J. Gene ́’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) for their support during data acquisition. </ dc:description >
< dc:identifier > https://doi.org/10.1109/JSEN.2021.3129340 </ dc:identifier >
< dc:identifier > 1530-437X </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10459.1/72508 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:publisher > Institute of Electrical and Electronics Engineers </ dc:publisher >
< dc:relation > info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ </ dc:relation >
< dc:relation > Versió postprint del document publicat a: https://doi.org/10.1109/JSEN.2021.3129340 </ dc:relation >
< dc:relation > IEEE Sensors Journal, 2021 </ dc:relation >
< dc:rights > (c) IEEE, 2021 </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:subject > Spectral analysis </ dc:subject >
< dc:subject > Filtering algorithms </ dc:subject >
< dc:subject > 3D point cloud registration </ dc:subject >
< dc:subject > Robot localization </ dc:subject >
< dc:title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ dc:title >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/acceptedVersion </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:repositori.udl.cat:10459.1_--_72508#ent1 " >
< edm:dataProvider > Universitat de Lleida. Repositori Obert </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< thesis schemaLocation =" http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd " >
< title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ title >
< creator > Guevara, Javier </ creator >
< creator > Gené Mola, Jordi </ creator >
< creator > Gregorio López, Eduard </ creator >
< creator > Auat Cheein, Fernando A. </ creator >
< subject > Spectral analysis </ subject >
< subject > Filtering algorithms </ subject >
< subject > 3D point cloud registration </ subject >
< subject > Robot localization </ subject >
< description > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ description >
< date > 2021-12-09 </ date >
< date > 2021-11-18 </ date >
< date > 2021-12-09 </ date >
< type > info:eu-repo/semantics/article </ type >
< identifier > https://doi.org/10.1109/JSEN.2021.3129340 </ identifier >
< identifier > 031824 </ identifier >
< identifier > 1530-437X </ identifier >
< identifier > http://hdl.handle.net/10459.1/72508 </ identifier >
< language > eng </ language >
< relation > Versió postprint del document publicat a: https://doi.org/10.1109/JSEN.2021.3129340 </ relation >
< relation > IEEE Sensors Journal, 2021 </ relation >
< relation > info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ </ relation >
< rights > info:eu-repo/semantics/openAccess </ rights >
< rights > (c) IEEE, 2021 </ rights >
< publisher > Institute of Electrical and Electronics Engineers </ publisher >
</ thesis >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > 00925njm 22002777a 4500 </ leader >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Guevara, Javier </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Gené Mola, Jordi </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Gregorio López, Eduard </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Auat Cheein, Fernando A. </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2021-11-18 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > https://doi.org/10.1109/JSEN.2021.3129340 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 031824 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 1530-437X </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > http://hdl.handle.net/10459.1/72508 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Spectral analysis </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Filtering algorithms </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > 3D point cloud registration </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 653 " >
< subfield code =" a " > Robot localization </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< mets ID =" DSpace_ITEM_10459.1-72508 " OBJID =" hdl:10459.1/72508 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >
< metsHdr CREATEDATE =" 2024-09-14T03:06:49Z " >
< agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >
< name > Repositori Obert UdL </ name >
</ agent >
</ metsHdr >
< dmdSec ID =" DMD_10459.1_72508 " >
< mdWrap MDTYPE =" MODS " >
< xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Guevara, Javier </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Gené Mola, Jordi </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Gregorio López, Eduard </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Auat Cheein, Fernando A. </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2021-12-09T11:38:31Z </ mods:dateAccessioned >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2021-11-18 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" doi " > https://doi.org/10.1109/JSEN.2021.3129340 </ mods:identifier >
< mods:identifier type =" idgrec " > 031824 </ mods:identifier >
< mods:identifier type =" issn " > 1530-437X </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/10459.1/72508 </ mods:identifier >
< mods:abstract > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ mods:abstract >
< mods:language >
< mods:languageTerm authority =" rfc3066 " > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > (c) IEEE, 2021 </ mods:accessCondition >
< mods:subject >
< mods:topic > Spectral analysis </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Filtering algorithms </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > 3D point cloud registration </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Robot localization </ mods:topic >
</ mods:subject >
< mods:titleInfo >
< mods:title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
</ mods:mods >
</ xmlData >
</ mdWrap >
</ dmdSec >
< amdSec ID =" TMD_10459.1_72508 " >
< rightsMD ID =" RIG_10459.1_72508 " >
< mdWrap MDTYPE =" OTHER " MIMETYPE =" text/plain " OTHERMDTYPE =" DSpaceDepositLicense " >
< binData > Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= </ binData >
</ mdWrap >
</ rightsMD >
</ amdSec >
< amdSec ID =" FO_10459.1_72508_4 " >
< techMD ID =" TECH_O_10459.1_72508_4 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://repositori.udl.cat/bitstreams/56d2c519-bcdc-4613-bc81-c6f8de7efd20/download </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > cc769505a730b19174d5085df9b1b9f8 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 6138989 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > 031824.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< amdSec ID =" FT_10459.1_72508_6 " >
< techMD ID =" TECH_T_10459.1_72508_6 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://repositori.udl.cat/bitstreams/57e933a3-b57b-47d9-8bb3-d707490308e9/download </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > b58e53684fe92eeb4e5706877624e137 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 23676 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > text/plain </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > 031824.pdf.txt </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< fileSec >
< fileGrp USE =" ORIGINAL " >
< file ADMID =" FO_10459.1_72508_4 " CHECKSUM =" cc769505a730b19174d5085df9b1b9f8 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_10459.1_72508_4 " ID =" BITSTREAM_ORIGINAL_10459.1_72508_4 " MIMETYPE =" application/pdf " SEQ =" 4 " SIZE =" 6138989 " >
</ file >
</ fileGrp >
< fileGrp USE =" TEXT " >
< file ADMID =" FT_10459.1_72508_6 " CHECKSUM =" b58e53684fe92eeb4e5706877624e137 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_10459.1_72508_6 " ID =" BITSTREAM_TEXT_10459.1_72508_6 " MIMETYPE =" text/plain " SEQ =" 6 " SIZE =" 23676 " >
</ file >
</ fileGrp >
</ fileSec >
< structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >
< div ADMID =" DMD_10459.1_72508 " TYPE =" DSpace Object Contents " >
< div TYPE =" DSpace BITSTREAM " >
</ div >
</ div >
</ structMap >
</ mets >
<?xml version="1.0" encoding="UTF-8" ?>
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:namePart > Guevara, Javier </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Gené Mola, Jordi </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Gregorio López, Eduard </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Auat Cheein, Fernando A. </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2021-12-09T11:38:31Z </ mods:dateAvailable >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2021-11-18 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" doi " > https://doi.org/10.1109/JSEN.2021.3129340 </ mods:identifier >
< mods:identifier type =" idgrec " > 031824 </ mods:identifier >
< mods:identifier type =" issn " > 1530-437X </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/10459.1/72508 </ mods:identifier >
< mods:abstract > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ mods:abstract >
< mods:language >
< mods:languageTerm > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > info:eu-repo/semantics/openAccess </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > (c) IEEE, 2021 </ mods:accessCondition >
< mods:subject >
< mods:topic > Spectral analysis </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Filtering algorithms </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > 3D point cloud registration </ mods:topic >
</ mods:subject >
< mods:subject >
< mods:topic > Robot localization </ mods:topic >
</ mods:subject >
< mods:titleInfo >
< mods:title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/article </ mods:genre >
</ mods:mods >
<?xml version="1.0" encoding="UTF-8" ?>
< qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >
< dc:title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ dc:title >
< dc:creator > Guevara, Javier </ dc:creator >
< dc:creator > Gené Mola, Jordi </ dc:creator >
< dc:creator > Gregorio López, Eduard </ dc:creator >
< dc:creator > Auat Cheein, Fernando A. </ dc:creator >
< dc:subject > Spectral analysis </ dc:subject >
< dc:subject > Filtering algorithms </ dc:subject >
< dc:subject > 3D point cloud registration </ dc:subject >
< dc:subject > Robot localization </ dc:subject >
< dcterms:abstract > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ dcterms:abstract >
< dcterms:issued > 2021-11-18 </ dcterms:issued >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > https://doi.org/10.1109/JSEN.2021.3129340 </ dc:identifier >
< dc:identifier > 031824 </ dc:identifier >
< dc:identifier > 1530-437X </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10459.1/72508 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Versió postprint del document publicat a: https://doi.org/10.1109/JSEN.2021.3129340 </ dc:relation >
< dc:relation > IEEE Sensors Journal, 2021 </ dc:relation >
< dc:relation > info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ </ dc:relation >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > (c) IEEE, 2021 </ dc:rights >
< dc:publisher > Institute of Electrical and Electronics Engineers </ dc:publisher >
</ qdc:qualifieddc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >
< ow:Publication about =" oai:repositori.udl.cat:10459.1/72508 " >
< dc:title > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ dc:title >
< dc:creator > Guevara, Javier </ dc:creator >
< dc:creator > Gené Mola, Jordi </ dc:creator >
< dc:creator > Gregorio López, Eduard </ dc:creator >
< dc:creator > Auat Cheein, Fernando A. </ dc:creator >
< dc:subject > Spectral analysis </ dc:subject >
< dc:subject > Filtering algorithms </ dc:subject >
< dc:subject > 3D point cloud registration </ dc:subject >
< dc:subject > Robot localization </ dc:subject >
< dc:description > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ dc:description >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:date > 2021-11-18 </ dc:date >
< dc:date > 2021-12-09T11:38:31Z </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:identifier > https://doi.org/10.1109/JSEN.2021.3129340 </ dc:identifier >
< dc:identifier > 031824 </ dc:identifier >
< dc:identifier > 1530-437X </ dc:identifier >
< dc:identifier > http://hdl.handle.net/10459.1/72508 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:relation > Versió postprint del document publicat a: https://doi.org/10.1109/JSEN.2021.3129340 </ dc:relation >
< dc:relation > IEEE Sensors Journal, 2021 </ dc:relation >
< dc:relation > info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ </ dc:relation >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > (c) IEEE, 2021 </ dc:rights >
< dc:publisher > Institute of Electrical and Electronics Engineers </ dc:publisher >
</ ow:Publication >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< metadata schemaLocation =" http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd " >
< element name =" dc " >
< element name =" contributor " >
< element name =" author " >
< element name =" none " >
< field name =" value " > Guevara, Javier </ field >
< field name =" value " > Gené Mola, Jordi </ field >
< field name =" value " > Gregorio López, Eduard </ field >
< field name =" value " > Auat Cheein, Fernando A. </ field >
</ element >
</ element >
</ element >
< element name =" date " >
< element name =" accessioned " >
< element name =" none " >
< field name =" value " > 2021-12-09T11:38:31Z </ field >
</ element >
</ element >
< element name =" issued " >
< element name =" none " >
< field name =" value " > 2021-11-18 </ field >
</ element >
</ element >
< element name =" updated " >
< element name =" none " >
< field name =" value " > 2021-12-09T11:38:31Z </ field >
</ element >
</ element >
</ element >
< element name =" description " >
< element name =" abstract " >
< element name =" none " >
< field name =" value " > The use of three-dimensional registration techniques is an important component for sensor-based localization and mapping. Several approaches have been proposed to align three-dimensional data, obtaining meaningful results in structured scenarios. However, the increased use of high-frame-rate 3D sensors has lead to more challenging application scenarios here the performance of registration techniques may degrade significantly. In order to improve the accuracy of the procedure, different works have considered a representative subset of points while preserving application-dependent features for registration. In this work, we tackle such a problem, considering the use of a general feature-extraction operator in the spectral domain as a prior step to the registration. The proposed spectral strategies use three wavelet transforms that are evaluated along with four well-known registration techniques. The methodology was experimentally validated in a dense orchard environment. The results show that the probability of failure in registration can be reduced up to 12.04% for the evaluated approaches, leading to a significant increase in the localization accuracy. Those results validate the effectiveness and efficiency of the spectral-assisted registration algorithms in an agricultural setting and motivate their usage for a wider range of applications. </ field >
</ element >
</ element >
< element name =" sponsorship " >
< element name =" none " >
< field name =" value " > This project has been supported by the National Agency of Research and Development (ANID, ex-Conicyt) under Fondecyt grant 1171760, Basal grant FB0008 and National Agency for Research and Devel- opment (ANID)/ PCHA/ Doctorado Nacional/ 2020-21200700. The authors would like to thank to Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00) for partially funding this research. The Spanish Ministry of Education is thanked for Mr. J. Gene ́’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) for their support during data acquisition. </ field >
</ element >
</ element >
</ element >
< element name =" format " >
< element name =" mimetype " >
< element name =" none " >
< field name =" value " > application/pdf </ field >
</ element >
</ element >
</ element >
< element name =" identifier " >
< element name =" doi " >
< element name =" none " >
< field name =" value " > https://doi.org/10.1109/JSEN.2021.3129340 </ field >
</ element >
</ element >
< element name =" idgrec " >
< element name =" none " >
< field name =" value " > 031824 </ field >
</ element >
</ element >
< element name =" issn " >
< element name =" none " >
< field name =" value " > 1530-437X </ field >
</ element >
</ element >
< element name =" uri " >
< element name =" none " >
< field name =" value " > http://hdl.handle.net/10459.1/72508 </ field >
</ element >
</ element >
</ element >
< element name =" language " >
< element name =" iso " >
< element name =" none " >
< field name =" value " > eng </ field >
</ element >
</ element >
</ element >
< element name =" publisher " >
< element name =" none " >
< field name =" value " > Institute of Electrical and Electronics Engineers </ field >
</ element >
</ element >
< element name =" relation " >
< element name =" none " >
< field name =" value " > info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/ </ field >
</ element >
< element name =" isformatof " >
< element name =" none " >
< field name =" value " > Versió postprint del document publicat a: https://doi.org/10.1109/JSEN.2021.3129340 </ field >
</ element >
</ element >
< element name =" ispartof " >
< element name =" none " >
< field name =" value " > IEEE Sensors Journal, 2021 </ field >
</ element >
</ element >
</ element >
< element name =" rights " >
< element name =" none " >
< field name =" value " > (c) IEEE, 2021 </ field >
</ element >
< element name =" accessRights " >
< element name =" none " >
< field name =" value " > info:eu-repo/semantics/openAccess </ field >
</ element >
</ element >
</ element >
< element name =" subject " >
< element name =" none " >
< field name =" value " > Spectral analysis </ field >
< field name =" value " > Filtering algorithms </ field >
< field name =" value " > 3D point cloud registration </ field >
< field name =" value " > Robot localization </ field >
</ element >
</ element >
< element name =" title " >
< element name =" none " >
< field name =" value " > 3D Spectral Graph Wavelet Point Signatures in Pre-Processing Stage for Mobile Laser Scanning Point Cloud Registration in Unstructured Orchard Environments </ field >
</ element >
</ element >
< element name =" type " >
< element name =" none " >
< field name =" value " > info:eu-repo/semantics/article </ field >
</ element >
< element name =" version " >
< element name =" none " >
< field name =" value " > info:eu-repo/semantics/acceptedVersion </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" udl " >
< element name =" creator " >
< element name =" email " >
< element name =" none " >
< field name =" value " > jordi.genemola@udl.cat </ field >
</ element >
</ element >
< element name =" name " >
< element name =" none " >
< field name =" value " > Gené Mola, Jordi </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" bundles " >
< element name =" bundle " >
< field name =" name " > ORIGINAL </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > 031824.pdf </ field >
< field name =" originalName " > 031824.pdf </ field >
< field name =" description " > Postprint </ field >
< field name =" format " > application/pdf </ field >
< field name =" size " > 6138989 </ field >
< field name =" url " > https://repositori.udl.cat/bitstreams/56d2c519-bcdc-4613-bc81-c6f8de7efd20/download </ field >
< field name =" checksum " > cc769505a730b19174d5085df9b1b9f8 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 4 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > TEXT </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > 031824.pdf.txt </ field >
< field name =" originalName " > 031824.pdf.txt </ field >
< field name =" description " > Extracted Text </ field >
< field name =" format " > text/plain </ field >
< field name =" size " > 23676 </ field >
< field name =" url " > https://repositori.udl.cat/bitstreams/57e933a3-b57b-47d9-8bb3-d707490308e9/download </ field >
< field name =" checksum " > b58e53684fe92eeb4e5706877624e137 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 6 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > LICENSE </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > license.txt </ field >
< field name =" originalName " > license.txt </ field >
< field name =" format " > text/plain; charset=utf-8 </ field >
< field name =" size " > 1748 </ field >
< field name =" url " > https://repositori.udl.cat/bitstreams/cb353595-ed9d-4105-bac7-084e89dd16b2/download </ field >
< field name =" checksum " > 8a4605be74aa9ea9d79846c1fba20a33 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 2 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > SWORD </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > mets.xml </ field >
< field name =" description " > SWORD deposit package </ field >
< field name =" format " > application/octet-stream </ field >
< field name =" size " > 5858881 </ field >
< field name =" url " > https://repositori.udl.cat/bitstreams/ddc5c230-094a-4269-a175-97597d677887/download </ field >
< field name =" checksum " > 745baa8ea94e5d768ac74668676f583d </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 3 </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > THUMBNAIL </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > 031824.pdf.jpg </ field >
< field name =" originalName " > 031824.pdf.jpg </ field >
< field name =" description " > Generated Thumbnail </ field >
< field name =" format " > image/jpeg </ field >
< field name =" size " > 2130 </ field >
< field name =" url " > https://repositori.udl.cat/bitstreams/f69b3f67-8cb7-4e95-837a-1e55f9161112/download </ field >
< field name =" checksum " > 72cfed7389deaf463d101d42567f6c72 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 5 </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" others " >
< field name =" handle " > 10459.1/72508 </ field >
< field name =" identifier " > oai:repositori.udl.cat:10459.1/72508 </ field >
< field name =" lastModifyDate " > 2023-11-24 09:34:22.46 </ field >
</ element >
< element name =" repository " >
< field name =" url " > https://repositori.udl.cat </ field >
< field name =" name " > Repositori Obert UdL </ field >
< field name =" mail " > repositori@udl.cat </ field >
</ element >
< element name =" license " >
< field name =" bin " > Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= </ field >
</ element >
</ metadata >