<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title lang =" ca-ES " > $p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$ </ dc:title >
< dc:creator > Ash, Avner </ dc:creator >
< dc:creator > Stevens, G. </ dc:creator >
< dc:description lang =" ca-ES " > We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ . </ dc:description >
< dc:publisher lang =" ca-ES " > Universitat de Barcelona </ dc:publisher >
< dc:date > 1997 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:format > application/pdf </ dc:format >
< dc:identifier > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362 </ dc:identifier >
< dc:identifier > 2038-4815 </ dc:identifier >
< dc:identifier > 0010-0757 </ dc:identifier >
< dc:source lang =" 0 " > RACO (Revistes Catalanes amb Accés Obert) </ dc:source >
< dc:language > eng </ dc:language >
< dc:relation > Collectanea Mathematica, 1997, 1997: Vol.: 48 Núm.: 1 -2, p. 1-30 </ dc:relation >
< dc:relation > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362/66666 </ dc:relation >
< dc:rights lang =" ca-ES " > info:eu-repo/semantics/openAccess </ dc:rights >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:raco.cat:article_--_56362#ent0 " >
< dc:creator > Ash, Avner </ dc:creator >
< dc:creator > Stevens, G. </ dc:creator >
< dc:date > 1997 </ dc:date >
< dc:description lang =" ca-ES " > We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ . </ dc:description >
< dc:identifier > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362 </ dc:identifier >
< dc:identifier > 2038-4815 </ dc:identifier >
< dc:identifier > 0010-0757 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:publisher lang =" ca-ES " > Universitat de Barcelona </ dc:publisher >
< dc:relation > Collectanea Mathematica, 1997, 1997: Vol.: 48 Núm.: 1 -2, p. 1-30 </ dc:relation >
< dc:relation > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362/66666 </ dc:relation >
< dc:rights lang =" ca-ES " > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:source lang =" 0 " > RACO (Revistes Catalanes amb Accés Obert) </ dc:source >
< dc:title lang =" ca-ES " > $p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$ </ dc:title >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:raco.cat:article_--_56362#ent1 " >
< edm:dataProvider > RACO. Revistes Catalanes amb Accés Obert </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > nmb a2200000Iu 4500 </ leader >
< controlfield tag =" 008 " > "970111 1997 eng " </ controlfield >
< datafield ind1 =" # " ind2 =" # " tag =" 022 " >
< subfield code =" $a " > 2038-4815 </ subfield >
</ datafield >
< datafield ind1 =" # " ind2 =" # " tag =" 022 " >
< subfield code =" $a " > 0010-0757 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > $p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$ </ subfield >
</ datafield >
< datafield ind1 =" 1 " ind2 =" " tag =" 720 " >
< subfield code =" a " > Ash, Avner </ subfield >
</ datafield >
< datafield ind1 =" 1 " ind2 =" " tag =" 720 " >
< subfield code =" a " > Stevens, G. </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ . </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" b " > Universitat de Barcelona </ subfield >
</ datafield >
< dataField ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 1997-01-11 00:00:00 </ subfield >
</ dataField >
< datafield ind1 =" " ind2 =" " tag =" 856 " >
< subfield code =" q " > application/pdf </ subfield >
</ datafield >
< datafield ind1 =" 4 " ind2 =" 0 " tag =" 856 " >
< subfield code =" u " > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362 </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" " tag =" 786 " >
< subfield code =" n " > Collectanea Mathematica; 1997: Vol.: 48 Núm.: 1 -2 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 546 " >
< subfield code =" a " > cat </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 540 " >
< subfield code =" a " > ##submission.copyrightStatement## </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< oai_biblat catForm =" u " encLvl =" 3 " level =" m " status =" c " type =" a " schemaLocation =" oai_biblat " >
< fixfield id =" 008 " > "970111 1997 eng " </ fixfield >
< varfield i1 =" # " i2 =" # " id =" 000 " >
< subfield label =" i " > 3.0.0v1.5 </ subfield >
< subfield label =" v " > 3.1.1.4 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 008 " >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 022 " >
< subfield label =" a " > 0010-0757 </ subfield >
< subfield label =" b " > 2038-4815 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 100 " >
< subfield label =" a " > Ash, Avner </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 100 " >
< subfield label =" a " > Stevens, G. </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 222 " >
< subfield label =" a " > Collectanea Mathematica </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 260 " >
< subfield label =" b " > Universitat de Barcelona </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 300 " >
< subfield label =" a " > V: 48 </ subfield >
< subfield label =" b " > N: 1 -2 </ subfield >
< subfield label =" e " > P1-30 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 520 " >
< subfield label =" o " > We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ . </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 546 " >
</ varfield >
< varfield i1 =" " i2 =" " id =" 856 " >
< subfield label =" q " > application/pdf </ subfield >
< subfield label =" u " > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362/66666 </ subfield >
</ varfield >
</ oai_biblat >
<?xml version="1.0" encoding="UTF-8" ?>
< oai_marc catForm =" u " encLvl =" 3 " level =" m " status =" c " type =" a " schemaLocation =" http://www.openarchives.org/OAI/1.1/oai_marc http://www.openarchives.org/OAI/1.1/oai_marc.xsd " >
< fixfield id =" 008 " > "970111 1997 eng " </ fixfield >
< varfield i1 =" # " i2 =" # " id =" 022 " >
< subfield label =" $a " > 2038-4815 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 022 " >
< subfield label =" $a " > 0010-0757 </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 042 " >
< subfield label =" a " > dc </ subfield >
</ varfield >
< varfield i1 =" 0 " i2 =" 0 " id =" 245 " >
< subfield label =" a " > $p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$ </ subfield >
</ varfield >
< varfield i1 =" 1 " i2 =" " id =" 720 " >
< subfield label =" a " > Ash, Avner </ subfield >
</ varfield >
< varfield i1 =" 1 " i2 =" " id =" 720 " >
< subfield label =" a " > Stevens, G. </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 520 " >
< subfield label =" a " > We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ . </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 260 " >
< subfield label =" b " > Universitat de Barcelona </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 260 " >
< subfield label =" c " > 1997-01-11 00:00:00 </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 856 " >
< subfield label =" q " > application/pdf </ subfield >
</ varfield >
< varfield i1 =" 4 " i2 =" 0 " id =" 856 " >
< subfield label =" u " > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362 </ subfield >
</ varfield >
< varfield i1 =" 0 " i2 =" " id =" 786 " >
< subfield label =" n " > Collectanea Mathematica; 1997: Vol.: 48 Núm.: 1 -2 </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 546 " >
< subfield label =" a " > cat </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 540 " >
< subfield label =" a " > ##submission.copyrightStatement## </ subfield >
</ varfield >
</ oai_marc >
<?xml version="1.0" encoding="UTF-8" ?>
< rfc1807 schemaLocation =" http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt http://www.openarchives.org/OAI/1.1/rfc1807.xsd " >
< bib-version > v2 </ bib-version >
< id > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362 </ id >
< entry > 2014-03-14T11:41:09Z </ entry >
< organization > Collectanea Mathematica </ organization >
< organization > 1997: Vol.: 48 Núm.: 1 -2; 1-30 </ organization >
< title > $p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$ </ title >
< author > Ash, Avner </ author >
< author > Stevens, G. </ author >
< date > 1997-01-11 00:00:00 </ date >
< other_access > url:http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362 </ other_access >
< language > eng </ language >
< abstract > We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ . </ abstract >
</ rfc1807 >