<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title lang =" ca-ES " > $L^p$ continuity of projectors of weighted harmonic Bergman spaces </ dc:title >
< dc:creator > Blasco, Óscar </ dc:creator >
< dc:creator > Pérez-Esteva, Salvador </ dc:creator >
< dc:description lang =" ca-ES " > In this paper we study spaces $A^p(w)$ consisting of harmonic functions in $B^n$ the unit ball in $\mathbb{R}^n$ and belonging to $L^p(w)$, where $dw(x)=w(1-\vert x\vert)dx$ and $w:(0,1]\rightarrow\mathbb{R}^+$ will denote a continuous integrable function. For weights satisfying certain Dini type conditions we construct families of projections of $L^p(w)$ onto $A^p(w)$. We use this to get for $1<p<\infty$ and $\frac{1}{p} + \frac{1}{p'} =1$, a duality $A^p(w)^\ast=A^{p'}(w')$, where $w'$ depends on $p$ and $w$. </ dc:description >
< dc:publisher lang =" ca-ES " > Universitat de Barcelona </ dc:publisher >
< dc:date > 2000 </ dc:date >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< dc:format > application/pdf </ dc:format >
< dc:identifier > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491 </ dc:identifier >
< dc:identifier > 2038-4815 </ dc:identifier >
< dc:identifier > 0010-0757 </ dc:identifier >
< dc:source lang =" 0 " > RACO (Revistes Catalanes amb Accés Obert) </ dc:source >
< dc:language > eng </ dc:language >
< dc:relation > Collectanea Mathematica, 2000, 2000: Vol.: 51 Núm.: 1, p. 49-58 </ dc:relation >
< dc:relation > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491/66268 </ dc:relation >
< dc:rights lang =" ca-ES " > info:eu-repo/semantics/openAccess </ dc:rights >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:raco.cat:article_--_56491#ent0 " >
< dc:creator > Blasco, Óscar </ dc:creator >
< dc:creator > Pérez-Esteva, Salvador </ dc:creator >
< dc:date > 2000 </ dc:date >
< dc:description lang =" ca-ES " > In this paper we study spaces $A^p(w)$ consisting of harmonic functions in $B^n$ the unit ball in $\mathbb{R}^n$ and belonging to $L^p(w)$, where $dw(x)=w(1-\vert x\vert)dx$ and $w:(0,1]\rightarrow\mathbb{R}^+$ will denote a continuous integrable function. For weights satisfying certain Dini type conditions we construct families of projections of $L^p(w)$ onto $A^p(w)$. We use this to get for $1<p<\infty$ and $\frac{1}{p} + \frac{1}{p'} =1$, a duality $A^p(w)^\ast=A^{p'}(w')$, where $w'$ depends on $p$ and $w$. </ dc:description >
< dc:identifier > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491 </ dc:identifier >
< dc:identifier > 2038-4815 </ dc:identifier >
< dc:identifier > 0010-0757 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:publisher lang =" ca-ES " > Universitat de Barcelona </ dc:publisher >
< dc:relation > Collectanea Mathematica, 2000, 2000: Vol.: 51 Núm.: 1, p. 49-58 </ dc:relation >
< dc:relation > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491/66268 </ dc:relation >
< dc:rights lang =" ca-ES " > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:source lang =" 0 " > RACO (Revistes Catalanes amb Accés Obert) </ dc:source >
< dc:title lang =" ca-ES " > $L^p$ continuity of projectors of weighted harmonic Bergman spaces </ dc:title >
< dc:type > info:eu-repo/semantics/article </ dc:type >
< dc:type > info:eu-repo/semantics/publishedVersion </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:raco.cat:article_--_56491#ent1 " >
< edm:dataProvider > RACO. Revistes Catalanes amb Accés Obert </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > nmb a2200000Iu 4500 </ leader >
< controlfield tag =" 008 " > "000111 2000 eng " </ controlfield >
< datafield ind1 =" # " ind2 =" # " tag =" 022 " >
< subfield code =" $a " > 2038-4815 </ subfield >
</ datafield >
< datafield ind1 =" # " ind2 =" # " tag =" 022 " >
< subfield code =" $a " > 0010-0757 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > $L^p$ continuity of projectors of weighted harmonic Bergman spaces </ subfield >
</ datafield >
< datafield ind1 =" 1 " ind2 =" " tag =" 720 " >
< subfield code =" a " > Blasco, Óscar </ subfield >
</ datafield >
< datafield ind1 =" 1 " ind2 =" " tag =" 720 " >
< subfield code =" a " > Pérez-Esteva, Salvador </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > In this paper we study spaces $A^p(w)$ consisting of harmonic functions in $B^n$ the unit ball in $\mathbb{R}^n$ and belonging to $L^p(w)$, where $dw(x)=w(1-\vert x\vert)dx$ and $w:(0,1]\rightarrow\mathbb{R}^+$ will denote a continuous integrable function. For weights satisfying certain Dini type conditions we construct families of projections of $L^p(w)$ onto $A^p(w)$. We use this to get for $1<p<\infty$ and $\frac{1}{p} + \frac{1}{p'} =1$, a duality $A^p(w)^\ast=A^{p'}(w')$, where $w'$ depends on $p$ and $w$. </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" b " > Universitat de Barcelona </ subfield >
</ datafield >
< dataField ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2000-01-11 00:00:00 </ subfield >
</ dataField >
< datafield ind1 =" " ind2 =" " tag =" 856 " >
< subfield code =" q " > application/pdf </ subfield >
</ datafield >
< datafield ind1 =" 4 " ind2 =" 0 " tag =" 856 " >
< subfield code =" u " > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491 </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" " tag =" 786 " >
< subfield code =" n " > Collectanea Mathematica; 2000: Vol.: 51 Núm.: 1 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 546 " >
< subfield code =" a " > cat </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 540 " >
< subfield code =" a " > ##submission.copyrightStatement## </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< oai_biblat catForm =" u " encLvl =" 3 " level =" m " status =" c " type =" a " schemaLocation =" oai_biblat " >
< fixfield id =" 008 " > "000111 2000 eng " </ fixfield >
< varfield i1 =" # " i2 =" # " id =" 000 " >
< subfield label =" i " > 3.0.0v1.5 </ subfield >
< subfield label =" v " > 3.1.1.4 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 008 " >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 022 " >
< subfield label =" a " > 0010-0757 </ subfield >
< subfield label =" b " > 2038-4815 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 100 " >
< subfield label =" a " > Blasco, Óscar </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 100 " >
< subfield label =" a " > Pérez-Esteva, Salvador </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 222 " >
< subfield label =" a " > Collectanea Mathematica </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 260 " >
< subfield label =" b " > Universitat de Barcelona </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 300 " >
< subfield label =" a " > V: 51 </ subfield >
< subfield label =" b " > N: 1 </ subfield >
< subfield label =" e " > P49-58 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 520 " >
< subfield label =" o " > In this paper we study spaces $A^p(w)$ consisting of harmonic functions in $B^n$ the unit ball in $\mathbb{R}^n$ and belonging to $L^p(w)$, where $dw(x)=w(1-\vert x\vert)dx$ and $w:(0,1]\rightarrow\mathbb{R}^+$ will denote a continuous integrable function. For weights satisfying certain Dini type conditions we construct families of projections of $L^p(w)$ onto $A^p(w)$. We use this to get for $1<p<\infty$ and $\frac{1}{p} + \frac{1}{p'} =1$, a duality $A^p(w)^\ast=A^{p'}(w')$, where $w'$ depends on $p$ and $w$. </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 546 " >
</ varfield >
< varfield i1 =" " i2 =" " id =" 856 " >
< subfield label =" q " > application/pdf </ subfield >
< subfield label =" u " > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491/66268 </ subfield >
</ varfield >
</ oai_biblat >
<?xml version="1.0" encoding="UTF-8" ?>
< oai_marc catForm =" u " encLvl =" 3 " level =" m " status =" c " type =" a " schemaLocation =" http://www.openarchives.org/OAI/1.1/oai_marc http://www.openarchives.org/OAI/1.1/oai_marc.xsd " >
< fixfield id =" 008 " > "000111 2000 eng " </ fixfield >
< varfield i1 =" # " i2 =" # " id =" 022 " >
< subfield label =" $a " > 2038-4815 </ subfield >
</ varfield >
< varfield i1 =" # " i2 =" # " id =" 022 " >
< subfield label =" $a " > 0010-0757 </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 042 " >
< subfield label =" a " > dc </ subfield >
</ varfield >
< varfield i1 =" 0 " i2 =" 0 " id =" 245 " >
< subfield label =" a " > $L^p$ continuity of projectors of weighted harmonic Bergman spaces </ subfield >
</ varfield >
< varfield i1 =" 1 " i2 =" " id =" 720 " >
< subfield label =" a " > Blasco, Óscar </ subfield >
</ varfield >
< varfield i1 =" 1 " i2 =" " id =" 720 " >
< subfield label =" a " > Pérez-Esteva, Salvador </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 520 " >
< subfield label =" a " > In this paper we study spaces $A^p(w)$ consisting of harmonic functions in $B^n$ the unit ball in $\mathbb{R}^n$ and belonging to $L^p(w)$, where $dw(x)=w(1-\vert x\vert)dx$ and $w:(0,1]\rightarrow\mathbb{R}^+$ will denote a continuous integrable function. For weights satisfying certain Dini type conditions we construct families of projections of $L^p(w)$ onto $A^p(w)$. We use this to get for $1<p<\infty$ and $\frac{1}{p} + \frac{1}{p'} =1$, a duality $A^p(w)^\ast=A^{p'}(w')$, where $w'$ depends on $p$ and $w$. </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 260 " >
< subfield label =" b " > Universitat de Barcelona </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 260 " >
< subfield label =" c " > 2000-01-11 00:00:00 </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 856 " >
< subfield label =" q " > application/pdf </ subfield >
</ varfield >
< varfield i1 =" 4 " i2 =" 0 " id =" 856 " >
< subfield label =" u " > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491 </ subfield >
</ varfield >
< varfield i1 =" 0 " i2 =" " id =" 786 " >
< subfield label =" n " > Collectanea Mathematica; 2000: Vol.: 51 Núm.: 1 </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 546 " >
< subfield label =" a " > cat </ subfield >
</ varfield >
< varfield i1 =" " i2 =" " id =" 540 " >
< subfield label =" a " > ##submission.copyrightStatement## </ subfield >
</ varfield >
</ oai_marc >
<?xml version="1.0" encoding="UTF-8" ?>
< rfc1807 schemaLocation =" http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt http://www.openarchives.org/OAI/1.1/rfc1807.xsd " >
< bib-version > v2 </ bib-version >
< id > http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491 </ id >
< entry > 2014-03-14T11:41:09Z </ entry >
< organization > Collectanea Mathematica </ organization >
< organization > 2000: Vol.: 51 Núm.: 1; 49-58 </ organization >
< title > $L^p$ continuity of projectors of weighted harmonic Bergman spaces </ title >
< author > Blasco, Óscar </ author >
< author > Pérez-Esteva, Salvador </ author >
< date > 2000-01-11 00:00:00 </ date >
< other_access > url:http://www.raco.cat/index.php/CollectaneaMathematica/article/view/56491 </ other_access >
< language > eng </ language >
< abstract > In this paper we study spaces $A^p(w)$ consisting of harmonic functions in $B^n$ the unit ball in $\mathbb{R}^n$ and belonging to $L^p(w)$, where $dw(x)=w(1-\vert x\vert)dx$ and $w:(0,1]\rightarrow\mathbb{R}^+$ will denote a continuous integrable function. For weights satisfying certain Dini type conditions we construct families of projections of $L^p(w)$ onto $A^p(w)$. We use this to get for $1<p<\infty$ and $\frac{1}{p} + \frac{1}{p'} =1$, a duality $A^p(w)^\ast=A^{p'}(w')$, where $w'$ depends on $p$ and $w$. </ abstract >
</ rfc1807 >