<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ dc:title >
< dc:creator > Torrell Belzach, Robert </ dc:creator >
< dc:contributor > TecnoCampus. Escola Superior Politècnica (ESUPT) </ dc:contributor >
< dc:contributor > Font Aragonès, Xavier </ dc:contributor >
< dc:subject > Indústria manufacturera, manteniment predictiu, intel·ligència artificial </ dc:subject >
< dc:description > Treball de fi de grau - Curs 2021-2022 </ dc:description >
< dc:description > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ dc:description >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2022 </ dc:date >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< dc:identifier > http://hdl.handle.net/20.500.12367/2164 </ dc:identifier >
< dc:language > spa </ dc:language >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:format > 49, 7 p. </ dc:format >
< dc:format > application/pdf </ dc:format >
< dc:format > application/pdf </ dc:format >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< d:DIDL schemaLocation =" urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd " >
< d:DIDLInfo >
< dcterms:created schemaLocation =" http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd " > 2023-01-31T13:52:11Z </ dcterms:created >
</ d:DIDLInfo >
< d:Item id =" hdl_20.500.12367_2164 " >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< dii:Identifier schemaLocation =" urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd " > urn:hdl:20.500.12367/2164 </ dii:Identifier >
</ d:Statement >
</ d:Descriptor >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ dc:title >
< dc:creator > Torrell Belzach, Robert </ dc:creator >
< dc:contributor > TecnoCampus. Escola Superior Politècnica (ESUPT) </ dc:contributor >
< dc:contributor > Font Aragonès, Xavier </ dc:contributor >
< dc:description > Treball de fi de grau - Curs 2021-2022 </ dc:description >
< dc:description > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ dc:description >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2022 </ dc:date >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< dc:identifier > http://hdl.handle.net/20.500.12367/2164 </ dc:identifier >
< dc:language > spa </ dc:language >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
</ oai_dc:dc >
</ d:Statement >
</ d:Descriptor >
< d:Component id =" 20.500.12367_2164_1 " >
</ d:Component >
< d:Component id =" 20.500.12367_2164_2 " >
</ d:Component >
</ d:Item >
</ d:DIDL >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd " >
< edm:ProvidedCHO about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:repositori.tecnocampus.cat:20.500.12367_--_2164#ent0 " >
< dc:contributor > TecnoCampus. Escola Superior Politècnica (ESUPT) </ dc:contributor >
< dc:contributor > Font Aragonès, Xavier </ dc:contributor >
< dc:creator > Torrell Belzach, Robert </ dc:creator >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2022 </ dc:date >
< dc:description > Treball de fi de grau - Curs 2021-2022 </ dc:description >
< dc:description > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ dc:description >
< dc:identifier > http://hdl.handle.net/20.500.12367/2164 </ dc:identifier >
< dc:language > spa </ dc:language >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:subject > Indústria manufacturera, manteniment predictiu, intel·ligència artificial </ dc:subject >
< dc:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ dc:title >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< edm:type > TEXT </ edm:type >
</ edm:ProvidedCHO >
< ore:Aggregation about =" https://catalonica.bnc.cat/catalonicahub/lod/oai:repositori.tecnocampus.cat:20.500.12367_--_2164#ent1 " >
< edm:dataProvider > Repositori Digital del TecnoCampus </ edm:dataProvider >
< edm:provider > Catalònica </ edm:provider >
</ ore:Aggregation >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< thesis schemaLocation =" http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd " >
< title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ title >
< creator > Torrell Belzach, Robert </ creator >
< contributor > TecnoCampus. Escola Superior Politècnica (ESUPT) </ contributor >
< contributor > Font Aragonès, Xavier </ contributor >
< description > Treball de fi de grau - Curs 2021-2022 </ description >
< description > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ description >
< date > 2023-01-31 </ date >
< date > 2023-01-31 </ date >
< date > 2022 </ date >
< type > info:eu-repo/semantics/bachelorThesis </ type >
< identifier > http://hdl.handle.net/20.500.12367/2164 </ identifier >
< language > spa </ language >
< rights > http://creativecommons.org/licenses/by/4.0/ </ rights >
< rights > info:eu-repo/semantics/openAccess </ rights >
< rights > Attribution 4.0 International </ rights >
</ thesis >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > 00925njm 22002777a 4500 </ leader >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Torrell Belzach, Robert </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2022 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > http://hdl.handle.net/20.500.12367/2164 </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > Abnormal Behavior Identification through Deep Learning: TensorFlow </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< mets ID =" DSpace_ITEM_20.500.12367-2164 " OBJID =" hdl:20.500.12367/2164 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >
< metsHdr CREATEDATE =" 2023-10-08T01:02:44Z " >
< agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >
< name > TECNOCAMPUS </ name >
</ agent >
</ metsHdr >
< dmdSec ID =" DMD_20.500.12367_2164 " >
< mdWrap MDTYPE =" MODS " >
< xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Torrell Belzach, Robert </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > other </ mods:roleTerm >
</ mods:role >
< mods:namePart > TecnoCampus. Escola Superior Politècnica (ESUPT) </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > tutor </ mods:roleTerm >
</ mods:role >
< mods:namePart > Font Aragonès, Xavier </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2023-01-31T13:52:11Z </ mods:dateAccessioned >
</ mods:extension >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2023-01-31T13:52:11Z </ mods:dateAvailable >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" uri " > http://hdl.handle.net/20.500.12367/2164 </ mods:identifier >
< mods:abstract > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ mods:abstract >
< mods:language >
< mods:languageTerm authority =" rfc3066 " > spa </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > Attribution 4.0 International </ mods:accessCondition >
< mods:titleInfo >
< mods:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/bachelorThesis </ mods:genre >
</ mods:mods >
</ xmlData >
</ mdWrap >
</ dmdSec >
< amdSec ID =" FO_20.500.12367_2164_1 " >
< techMD ID =" TECH_O_20.500.12367_2164_1 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/1/TFG_TorrellBelzach_Memoria.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 0280fdc9e92dca6d2d12da3a2c3b47a6 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 982842 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > TFG_TorrellBelzach_Memoria.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< amdSec ID =" FO_20.500.12367_2164_2 " >
< techMD ID =" TECH_O_20.500.12367_2164_2 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/2/TFG_TorrellBelzach_EstudiViabilitat.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > b57c59543abecff84694fcf21116397b </ premis:messageDigest >
</ premis:fixity >
< premis:size > 216799 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > TFG_TorrellBelzach_EstudiViabilitat.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< amdSec ID =" FT_20.500.12367_2164_4 " >
< techMD ID =" TECH_T_20.500.12367_2164_4 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/4/TFG_TorrellBelzach_EstudiViabilitat.pdf.txt </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 6434912d73bdbf78a92a823a4cba03f5 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 7755 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > text/plain </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > TFG_TorrellBelzach_EstudiViabilitat.pdf.txt </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< amdSec ID =" FT_20.500.12367_2164_5 " >
< techMD ID =" TECH_T_20.500.12367_2164_5 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/5/TFG_TorrellBelzach_Memoria.pdf.txt </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 7b7490d067c13677c4c6a8dc7a308007 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 68699 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > text/plain </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > TFG_TorrellBelzach_Memoria.pdf.txt </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< fileSec >
< fileGrp USE =" ORIGINAL " >
< file ADMID =" FO_20.500.12367_2164_1 " CHECKSUM =" 0280fdc9e92dca6d2d12da3a2c3b47a6 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_20.500.12367_2164_1 " ID =" BITSTREAM_ORIGINAL_20.500.12367_2164_1 " MIMETYPE =" application/pdf " SEQ =" 1 " SIZE =" 982842 " >
</ file >
< file ADMID =" FO_20.500.12367_2164_2 " CHECKSUM =" b57c59543abecff84694fcf21116397b " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_20.500.12367_2164_2 " ID =" BITSTREAM_ORIGINAL_20.500.12367_2164_2 " MIMETYPE =" application/pdf " SEQ =" 2 " SIZE =" 216799 " >
</ file >
</ fileGrp >
< fileGrp USE =" TEXT " >
< file ADMID =" FT_20.500.12367_2164_4 " CHECKSUM =" 6434912d73bdbf78a92a823a4cba03f5 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_20.500.12367_2164_4 " ID =" BITSTREAM_TEXT_20.500.12367_2164_4 " MIMETYPE =" text/plain " SEQ =" 4 " SIZE =" 7755 " >
</ file >
< file ADMID =" FT_20.500.12367_2164_5 " CHECKSUM =" 7b7490d067c13677c4c6a8dc7a308007 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_20.500.12367_2164_5 " ID =" BITSTREAM_TEXT_20.500.12367_2164_5 " MIMETYPE =" text/plain " SEQ =" 5 " SIZE =" 68699 " >
</ file >
</ fileGrp >
</ fileSec >
< structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >
< div ADMID =" DMD_20.500.12367_2164 " TYPE =" DSpace Object Contents " >
< div TYPE =" DSpace BITSTREAM " >
</ div >
< div TYPE =" DSpace BITSTREAM " >
</ div >
</ div >
</ structMap >
</ mets >
<?xml version="1.0" encoding="UTF-8" ?>
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:namePart > Torrell Belzach, Robert </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2023-01-31T13:52:11Z </ mods:dateAvailable >
</ mods:extension >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2023-01-31T13:52:11Z </ mods:dateAccessioned >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2022 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" uri " > http://hdl.handle.net/20.500.12367/2164 </ mods:identifier >
< mods:abstract > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ mods:abstract >
< mods:language >
< mods:languageTerm > spa </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > http://creativecommons.org/licenses/by/4.0/ </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > info:eu-repo/semantics/openAccess </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > Attribution 4.0 International </ mods:accessCondition >
< mods:titleInfo >
< mods:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ mods:title >
</ mods:titleInfo >
< mods:genre > info:eu-repo/semantics/bachelorThesis </ mods:genre >
</ mods:mods >
<?xml version="1.0" encoding="UTF-8" ?>
< oaire:record schemaLocation =" http://namespaceopenaire.eu/schema/oaire/ " >
< dc:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ dc:title >
< datacite:creator >
< datacite:creatorName > Torrell Belzach, Robert </ datacite:creatorName >
</ datacite:creator >
< datacite:contributor > TecnoCampus. Escola Superior Politècnica (ESUPT) </ datacite:contributor >
< datacite:contributor > Font Aragonès, Xavier </ datacite:contributor >
< dc:subject > Indústria manufacturera, manteniment predictiu, intel·ligència artificial </ dc:subject >
< dc:description > Treball de fi de grau - Curs 2021-2022 </ dc:description >
< dc:description > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ dc:description >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2022 </ dc:date >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< datacite:alternateIdentifier > http://hdl.handle.net/20.500.12367/2164 </ datacite:alternateIdentifier >
< dc:language > spa </ dc:language >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:format > 49, 7 p. </ dc:format >
< dc:format > application/pdf </ dc:format >
< dc:format > application/pdf </ dc:format >
< oaire:file > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/1/TFG_TorrellBelzach_Memoria.pdf </ oaire:file >
</ oaire:record >
<?xml version="1.0" encoding="UTF-8" ?>
< qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >
< dc:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ dc:title >
< dc:creator > Torrell Belzach, Robert </ dc:creator >
< dc:contributor > TecnoCampus. Escola Superior Politècnica (ESUPT) </ dc:contributor >
< dc:contributor > Font Aragonès, Xavier </ dc:contributor >
< dcterms:abstract > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ dcterms:abstract >
< dcterms:dateAccepted > 2023-01-31T13:52:11Z </ dcterms:dateAccepted >
< dcterms:available > 2023-01-31T13:52:11Z </ dcterms:available >
< dcterms:created > 2023-01-31T13:52:11Z </ dcterms:created >
< dcterms:issued > 2022 </ dcterms:issued >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< dc:identifier > http://hdl.handle.net/20.500.12367/2164 </ dc:identifier >
< dc:language > spa </ dc:language >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
</ qdc:qualifieddc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >
< ow:Publication about =" oai:repositori.tecnocampus.cat:20.500.12367/2164 " >
< dc:title > Abnormal Behavior Identification through Deep Learning: TensorFlow </ dc:title >
< dc:creator > Torrell Belzach, Robert </ dc:creator >
< dc:contributor > TecnoCampus. Escola Superior Politècnica (ESUPT) </ dc:contributor >
< dc:contributor > Font Aragonès, Xavier </ dc:contributor >
< dc:description > Treball de fi de grau - Curs 2021-2022 </ dc:description >
< dc:description > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ dc:description >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2023-01-31T13:52:11Z </ dc:date >
< dc:date > 2022 </ dc:date >
< dc:type > info:eu-repo/semantics/bachelorThesis </ dc:type >
< dc:identifier > http://hdl.handle.net/20.500.12367/2164 </ dc:identifier >
< dc:language > spa </ dc:language >
< dc:rights > http://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > info:eu-repo/semantics/openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
</ ow:Publication >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< metadata schemaLocation =" http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd " >
< element name =" dc " >
< element name =" contributor " >
< element name =" author " >
< element name =" none " >
< field name =" value " > Torrell Belzach, Robert </ field >
< field name =" authority " > 010ef51f-844d-4a1b-b529-91c7641161e9 </ field >
< field name =" confidence " > -1 </ field >
</ element >
</ element >
< element name =" other " >
< element name =" ca " >
< field name =" value " > TecnoCampus. Escola Superior Politècnica (ESUPT) </ field >
</ element >
</ element >
< element name =" tutor " >
< element name =" none " >
< field name =" value " > Font Aragonès, Xavier </ field >
< field name =" authority " > 78e5ba59-f06f-47e0-9154-cf897af416ee </ field >
< field name =" confidence " > -1 </ field >
</ element >
</ element >
</ element >
< element name =" date " >
< element name =" accessioned " >
< element name =" none " >
< field name =" value " > 2023-01-31T13:52:11Z </ field >
</ element >
</ element >
< element name =" available " >
< element name =" none " >
< field name =" value " > 2023-01-31T13:52:11Z </ field >
</ element >
</ element >
< element name =" issued " >
< element name =" none " >
< field name =" value " > 2022 </ field >
</ element >
</ element >
</ element >
< element name =" identifier " >
< element name =" uri " >
< element name =" none " >
< field name =" value " > http://hdl.handle.net/20.500.12367/2164 </ field >
</ element >
</ element >
</ element >
< element name =" description " >
< element name =" ca " >
< field name =" value " > Treball de fi de grau - Curs 2021-2022 </ field >
</ element >
< element name =" abstract " >
< element name =" ca " >
< field name =" value " > Aplicar efectivament a l´industria de la manufacturació el manteniment predictiu, es a dir, poder esbrinar quan, on i com tindrem fallades en un sistema de la cadena de producció pot resultar molt beneficiós. Per a aplicar el manteniment predictiu, es desenvoluparan models d’intel·ligència artificial. Es posaran a prova aquests diversos models estadístics, d’aprenentatge automàtic i d’aprenentatge profund per a comprendre quines tècniques ens ofereixen els millors resultats davant aquest problema. </ field >
</ element >
</ element >
</ element >
< element name =" format " >
< element name =" extent " >
< element name =" ca " >
< field name =" value " > 49, 7 p. </ field >
</ element >
</ element >
</ element >
< element name =" language " >
< element name =" iso " >
< element name =" ca " >
< field name =" value " > spa </ field >
</ element >
</ element >
</ element >
< element name =" rights " >
< element name =" * " >
< field name =" value " > Attribution 4.0 International </ field >
</ element >
< element name =" uri " >
< element name =" * " >
< field name =" value " > http://creativecommons.org/licenses/by/4.0/ </ field >
</ element >
</ element >
< element name =" accessLevel " >
< element name =" none " >
< field name =" value " > info:eu-repo/semantics/openAccess </ field >
</ element >
</ element >
</ element >
< element name =" subject " >
< element name =" other " >
< element name =" ca " >
< field name =" value " > Indústria manufacturera, manteniment predictiu, intel·ligència artificial </ field >
</ element >
</ element >
</ element >
< element name =" title " >
< element name =" ca " >
< field name =" value " > Abnormal Behavior Identification through Deep Learning: TensorFlow </ field >
</ element >
</ element >
< element name =" type " >
< element name =" ca " >
< field name =" value " > info:eu-repo/semantics/bachelorThesis </ field >
</ element >
</ element >
< element name =" embargo " >
< element name =" terms " >
< element name =" ca " >
< field name =" value " > cap </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" bundles " >
< element name =" bundle " >
< field name =" name " > ORIGINAL </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > TFG_TorrellBelzach_Memoria.pdf </ field >
< field name =" originalName " > TFG_TorrellBelzach_Memoria.pdf </ field >
< field name =" format " > application/pdf </ field >
< field name =" size " > 982842 </ field >
< field name =" url " > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/1/TFG_TorrellBelzach_Memoria.pdf </ field >
< field name =" checksum " > 0280fdc9e92dca6d2d12da3a2c3b47a6 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 1 </ field >
< field name =" drm " > open access </ field >
</ element >
< element name =" bitstream " >
< field name =" name " > TFG_TorrellBelzach_EstudiViabilitat.pdf </ field >
< field name =" originalName " > TFG_TorrellBelzach_EstudiViabilitat.pdf </ field >
< field name =" format " > application/pdf </ field >
< field name =" size " > 216799 </ field >
< field name =" url " > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/2/TFG_TorrellBelzach_EstudiViabilitat.pdf </ field >
< field name =" checksum " > b57c59543abecff84694fcf21116397b </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 2 </ field >
< field name =" drm " > open access </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > CC-LICENSE </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > license_rdf </ field >
< field name =" originalName " > license_rdf </ field >
< field name =" format " > application/rdf+xml; charset=utf-8 </ field >
< field name =" size " > 908 </ field >
< field name =" url " > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/3/license_rdf </ field >
< field name =" checksum " > 0175ea4a2d4caec4bbcc37e300941108 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 3 </ field >
< field name =" drm " > open access </ field >
</ element >
</ element >
</ element >
< element name =" bundle " >
< field name =" name " > TEXT </ field >
< element name =" bitstreams " >
< element name =" bitstream " >
< field name =" name " > TFG_TorrellBelzach_EstudiViabilitat.pdf.txt </ field >
< field name =" originalName " > TFG_TorrellBelzach_EstudiViabilitat.pdf.txt </ field >
< field name =" description " > Extracted text </ field >
< field name =" format " > text/plain </ field >
< field name =" size " > 7755 </ field >
< field name =" url " > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/4/TFG_TorrellBelzach_EstudiViabilitat.pdf.txt </ field >
< field name =" checksum " > 6434912d73bdbf78a92a823a4cba03f5 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 4 </ field >
< field name =" drm " > open access </ field >
</ element >
< element name =" bitstream " >
< field name =" name " > TFG_TorrellBelzach_Memoria.pdf.txt </ field >
< field name =" originalName " > TFG_TorrellBelzach_Memoria.pdf.txt </ field >
< field name =" description " > Extracted text </ field >
< field name =" format " > text/plain </ field >
< field name =" size " > 68699 </ field >
< field name =" url " > https://repositori.tecnocampus.cat/bitstream/20.500.12367/2164/5/TFG_TorrellBelzach_Memoria.pdf.txt </ field >
< field name =" checksum " > 7b7490d067c13677c4c6a8dc7a308007 </ field >
< field name =" checksumAlgorithm " > MD5 </ field >
< field name =" sid " > 5 </ field >
< field name =" drm " > open access </ field >
</ element >
</ element >
</ element >
</ element >
< element name =" others " >
< field name =" handle " > 20.500.12367/2164 </ field >
< field name =" identifier " > oai:repositori.tecnocampus.cat:20.500.12367/2164 </ field >
< field name =" lastModifyDate " > 2023-06-27 01:45:37.808 </ field >
< field name =" drm " > open access </ field >
</ element >
< element name =" repository " >
< field name =" name " > TECNOCAMPUS </ field >
< field name =" mail " > pir@csuc.cat </ field >
</ element >
</ metadata >