• Català
  • Castellano
  • English
Logo Catalònica
  • Cerca
  • Col·leccions
  • Coneix-nos
  • Ajuda
  • Directori
  • Professionals
Està a:  › Dades de registre
Linked Open Data
$p$-adic groups in quantum mechanics
Identificadors del recurs
http://hdl.handle.net/2445/186255
Procedència
(Dipòsit Digital de la Universitat de Barcelona)

Fitxa

Títol:
$p$-adic groups in quantum mechanics
Matèria:
Nombres p-àdics
Camps p-àdics
Anàlisi p-àdica
Teoria quàntica
Treballs de fi de grau
p-adic numbers
p-adic fields
p-adic analysis
Quantum theory
Bachelor's theses
Descripció:
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau
[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.
Idioma:
English
Autor/Productor:
Blanco Cabanillas, Anna
Altres col·laboradors/productors:
Travesa i Grau, Artur
Drets:
cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/openAccess
Data:
2022-06-02T10:06:29Z
2022-01-22
Tipus de recurs:
info:eu-repo/semantics/bachelorThesis
Format:
49 p.
application/pdf

oai_dc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>$p$-adic groups in quantum mechanics</dc:title>

    2. <dc:creator>Blanco Cabanillas, Anna</dc:creator>

    3. <dc:contributor>Travesa i Grau, Artur</dc:contributor>

    4. <dc:subject>Nombres p-àdics</dc:subject>

    5. <dc:subject>Camps p-àdics</dc:subject>

    6. <dc:subject>Anàlisi p-àdica</dc:subject>

    7. <dc:subject>Teoria quàntica</dc:subject>

    8. <dc:subject>Treballs de fi de grau</dc:subject>

    9. <dc:subject>p-adic numbers</dc:subject>

    10. <dc:subject>p-adic fields</dc:subject>

    11. <dc:subject>p-adic analysis</dc:subject>

    12. <dc:subject>Quantum theory</dc:subject>

    13. <dc:subject>Bachelor's theses</dc:subject>

    14. <dc:description>Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau</dc:description>

    15. <dc:description>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</dc:description>

    16. <dc:date>2022-06-02T10:06:29Z</dc:date>

    17. <dc:date>2022-06-02T10:06:29Z</dc:date>

    18. <dc:date>2022-01-22</dc:date>

    19. <dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>

    20. <dc:identifier>http://hdl.handle.net/2445/186255</dc:identifier>

    21. <dc:language>eng</dc:language>

    22. <dc:rights>cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</dc:rights>

    23. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

    24. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    25. <dc:format>49 p.</dc:format>

    26. <dc:format>application/pdf</dc:format>

    </oai_dc:dc>

edm

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">

    1. <edm:ProvidedCHO about="https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_186255#ent0">

      1. <dc:contributor>Travesa i Grau, Artur</dc:contributor>

      2. <dc:creator>Blanco Cabanillas, Anna</dc:creator>

      3. <dc:date>2022-06-02T10:06:29Z</dc:date>

      4. <dc:date>2022-06-02T10:06:29Z</dc:date>

      5. <dc:date>2022-01-22</dc:date>

      6. <dc:description>Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau</dc:description>

      7. <dc:description>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</dc:description>

      8. <dc:identifier>http://hdl.handle.net/2445/186255</dc:identifier>

      9. <dc:language>eng</dc:language>

      10. <dc:rights>cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</dc:rights>

      11. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

      12. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

      13. <dc:subject>Nombres p-àdics</dc:subject>

      14. <dc:subject>Camps p-àdics</dc:subject>

      15. <dc:subject>Anàlisi p-àdica</dc:subject>

      16. <dc:subject>Teoria quàntica</dc:subject>

      17. <dc:subject>Treballs de fi de grau</dc:subject>

      18. <dc:subject>p-adic numbers</dc:subject>

      19. <dc:subject>p-adic fields</dc:subject>

      20. <dc:subject>p-adic analysis</dc:subject>

      21. <dc:subject>Quantum theory</dc:subject>

      22. <dc:subject>Bachelor's theses</dc:subject>

      23. <dc:title>$p$-adic groups in quantum mechanics</dc:title>

      24. <dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>

      25. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_186255#ent1">

      1. <edm:aggregatedCHO resource="https://catalonica.bnc.cat/catalonicahub/lod/oai:diposit.ub.edu:2445_--_186255#ent0" />
      2. <edm:dataProvider>Dipòsit Digital de la Universitat de Barcelona</edm:dataProvider>

      3. <edm:isShownAt resource="http://hdl.handle.net/2445/186255" />
      4. <edm:isShownBy resource="http://diposit.ub.edu/dspace/bitstream/2445/186255/1/ces186255.pdf" />
      5. <edm:provider>Catalònica</edm:provider>

      6. <edm:rights resource="http://creativecommons.org/licenses/by-nc-nd/3.0/es/" />

      </ore:Aggregation>

    </rdf:RDF>

marc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Blanco Cabanillas, Anna</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2022-01-22</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</subfield>

      </datafield>

    6. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">http://hdl.handle.net/2445/186255</subfield>

      </datafield>

    7. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">$p$-adic groups in quantum mechanics</subfield>

      </datafield>

    </record>

mets

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mets ID=" DSpace_ITEM_2445-186255" OBJID=" hdl:2445/186255" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">

    1. <metsHdr CREATEDATE="2023-05-21T22:06:42Z">

      1. <agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">

        1. <name>Dip&ograve;sit Digital de la Universitat de Barcelona</name>

        </agent>

      </metsHdr>

    2. <dmdSec ID="DMD_2445_186255">

      1. <mdWrap MDTYPE="MODS">

        1. <xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

          1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

            1. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">advisor</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Travesa i Grau, Artur</mods:namePart>

              </mods:name>

            2. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Blanco Cabanillas, Anna</mods:namePart>

              </mods:name>

            3. <mods:extension>

              1. <mods:dateAccessioned encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAccessioned>

              </mods:extension>

            4. <mods:extension>

              1. <mods:dateAvailable encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAvailable>

              </mods:extension>

            5. <mods:originInfo>

              1. <mods:dateIssued encoding="iso8601">2022-01-22</mods:dateIssued>

              </mods:originInfo>

            6. <mods:identifier type="uri">http://hdl.handle.net/2445/186255</mods:identifier>

            7. <mods:abstract>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</mods:abstract>

            8. <mods:language>

              1. <mods:languageTerm authority="rfc3066">eng</mods:languageTerm>

              </mods:language>

            9. <mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</mods:accessCondition>

            10. <mods:titleInfo>

              1. <mods:title>$p$-adic groups in quantum mechanics</mods:title>

              </mods:titleInfo>

            11. <mods:genre>info:eu-repo/semantics/bachelorThesis</mods:genre>

            </mods:mods>

          </xmlData>

        </mdWrap>

      </dmdSec>

    3. <amdSec ID="TMD_2445_186255">

      1. <rightsMD ID="RIG_2445_186255">

        1. <mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">

          1. <binData>RWxzIG1hdGVyaWFscyBsbGl1cmF0cyBhbCBEaXDDsnNpdCBkaWdpdGFsIGRlIGxhIFVCIHF1ZSBlc3RpZ3VpbiBzdWJqZWN0ZXMgYSB1bmEgbGxpY8OobmNpYSBkZSBDcmVhdGl2ZSBDb21tb25zLAplbiBlbCBtb21lbnQgZGUgbGxpdXJhciBlbCBkb2N1bWVudCwgZWwgcHJvcGkgdXN1YXJpIGwnaGEgZCdlc2NvbGxpci4KU2kgdXMgcGxhdSBubyBvYmxpZGV1IGFzc2lnbmFyIHVuYSBsbGljw6huY2lhIGFsIHZvc3RyZSBkb2N1bWVudCEuCg==</binData>

          </mdWrap>

        </rightsMD>

      </amdSec>

    4. <amdSec ID="FO_2445_186255_1">

      1. <techMD ID="TECH_O_2445_186255_1">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/186255/1/ces186255.pdf</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>b2a25a7f4ad229ba7be48f01f4e71629</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>309733</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>text/plain</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>ces186255.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    5. <amdSec ID="FO_2445_186255_2">

      1. <techMD ID="TECH_O_2445_186255_2">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/186255/2/tfg_blanco_cabanillas_anna.pdf</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>d66115f85308672d824f502eb9c0c1dd</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>559245</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>application/pdf</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>tfg_blanco_cabanillas_anna.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    6. <amdSec ID="FT_2445_186255_5">

      1. <techMD ID="TECH_T_2445_186255_5">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/186255/5/tfg_blanco_cabanillas_anna.pdf.txt</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>6cc46f17bf7ad65cbe11755fd2850745</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>104436</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>text/plain</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>tfg_blanco_cabanillas_anna.pdf.txt</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    7. <fileSec>

      1. <fileGrp USE="ORIGINAL">

        1. <file ADMID="FO_2445_186255_1" CHECKSUM="b2a25a7f4ad229ba7be48f01f4e71629" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_186255_1" ID="BITSTREAM_ORIGINAL_2445_186255_1" MIMETYPE="text/plain" SEQ="1" SIZE="309733">

          1. <FLocat LOCTYPE="URL" href="http://diposit.ub.edu/dspace/bitstream/2445/186255/1/ces186255.pdf" type="simple" />

          </file>

        2. <file ADMID="FO_2445_186255_2" CHECKSUM="d66115f85308672d824f502eb9c0c1dd" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_186255_2" ID="BITSTREAM_ORIGINAL_2445_186255_2" MIMETYPE="application/pdf" SEQ="2" SIZE="559245">

          1. <FLocat LOCTYPE="URL" href="http://diposit.ub.edu/dspace/bitstream/2445/186255/2/tfg_blanco_cabanillas_anna.pdf" type="simple" />

          </file>

        </fileGrp>

      2. <fileGrp USE="TEXT">

        1. <file ADMID="FT_2445_186255_5" CHECKSUM="6cc46f17bf7ad65cbe11755fd2850745" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_186255_5" ID="BITSTREAM_TEXT_2445_186255_5" MIMETYPE="text/plain" SEQ="5" SIZE="104436">

          1. <FLocat LOCTYPE="URL" href="http://diposit.ub.edu/dspace/bitstream/2445/186255/5/tfg_blanco_cabanillas_anna.pdf.txt" type="simple" />

          </file>

        </fileGrp>

      </fileSec>

    8. <structMap LABEL="DSpace Object" TYPE="LOGICAL">

      1. <div ADMID="DMD_2445_186255" TYPE="DSpace Object Contents">

        1. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_2445_186255_1" />

          </div>

        2. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_2445_186255_2" />

          </div>

        </div>

      </structMap>

    </mets>

mods

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Blanco Cabanillas, Anna</mods:namePart>

      </mods:name>

    2. <mods:extension>

      1. <mods:dateAvailable encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAvailable>

      </mods:extension>

    3. <mods:extension>

      1. <mods:dateAccessioned encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAccessioned>

      </mods:extension>

    4. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2022-01-22</mods:dateIssued>

      </mods:originInfo>

    5. <mods:identifier type="uri">http://hdl.handle.net/2445/186255</mods:identifier>

    6. <mods:abstract>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</mods:abstract>

    7. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    8. <mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>

    9. <mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>

    10. <mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</mods:accessCondition>

    11. <mods:titleInfo>

      1. <mods:title>$p$-adic groups in quantum mechanics</mods:title>

      </mods:titleInfo>

    12. <mods:genre>info:eu-repo/semantics/bachelorThesis</mods:genre>

    </mods:mods>

qdc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>$p$-adic groups in quantum mechanics</dc:title>

    2. <dc:contributor.advisor>Travesa i Grau, Artur</dc:contributor.advisor>

    3. <dc:creator>Blanco Cabanillas, Anna</dc:creator>

    4. <dc:subject.classification>Nombres p-àdics</dc:subject.classification>

    5. <dc:subject.classification>Camps p-àdics</dc:subject.classification>

    6. <dc:subject.classification>Anàlisi p-àdica</dc:subject.classification>

    7. <dc:subject.classification>Teoria quàntica</dc:subject.classification>

    8. <dc:subject.classification>Treballs de fi de grau</dc:subject.classification>

    9. <dc:subject.other>p-adic numbers</dc:subject.other>

    10. <dc:subject.other>p-adic fields</dc:subject.other>

    11. <dc:subject.other>p-adic analysis</dc:subject.other>

    12. <dc:subject.other>Quantum theory</dc:subject.other>

    13. <dc:subject.other>Bachelor's theses</dc:subject.other>

    14. <dcterms:abstract>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</dcterms:abstract>

    15. <dcterms:dateAccepted>2022-06-02T10:06:29Z</dcterms:dateAccepted>

    16. <dcterms:available>2022-06-02T10:06:29Z</dcterms:available>

    17. <dcterms:created>2022-06-02T10:06:29Z</dcterms:created>

    18. <dcterms:issued>2022-01-22</dcterms:issued>

    19. <dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>

    20. <dc:identifier>http://hdl.handle.net/2445/186255</dc:identifier>

    21. <dc:language>eng</dc:language>

    22. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

    23. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    24. <dc:rights>cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</dc:rights>

    </qdc:qualifieddc>

rdf

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:diposit.ub.edu:2445/186255">

      1. <dc:title>$p$-adic groups in quantum mechanics</dc:title>

      2. <dc:creator>Blanco Cabanillas, Anna</dc:creator>

      3. <dc:contributor>Travesa i Grau, Artur</dc:contributor>

      4. <dc:description>Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau</dc:description>

      5. <dc:description>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</dc:description>

      6. <dc:date>2022-06-02T10:06:29Z</dc:date>

      7. <dc:date>2022-06-02T10:06:29Z</dc:date>

      8. <dc:date>2022-01-22</dc:date>

      9. <dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>

      10. <dc:identifier>http://hdl.handle.net/2445/186255</dc:identifier>

      11. <dc:language>eng</dc:language>

      12. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

      13. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

      14. <dc:rights>cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</dc:rights>

      </ow:Publication>

    </rdf:RDF>

Biblioteca de Catalunya Carrer de l'Hospital, 56. 08001 Barcelona Adreça electrònica: catalonica@bnc.cat Tlf.: +34 932 702 300
  • Logotipo de Biblioteca de Catalunya
  • Logotipo de la Generalitat de Catalunya
  • Nota tècnica
  • Avís legal
  • Repositori OAI